Quantum computing with driven-dissipative Josephson circuits

Invited

Abstract

Superconducting qubits are one of the most promising platforms to implement quantum technologies. Quantum processors of tens of qubits are now available, and exciting applications with these intermediate size systems are in perspective. However, many algorithms, including all those with a proved quantum speed-up, require extremely low error rates. This will most likely require quantum error correction (QEC). Unfortunately, current QEC architectures require daunting overheads in physical qubits and control electronics. The goal of this research is to reduce this overhead, and our approach is based on two key ideas. First, we use high Q resonators to redundantly encode quantum information. Second, we engineer non-linear dissipation to protect and manipulate this information.

Presenters

  • Zaki Leghtas

    Centre Automatique et Systèmes, Mines ParisTech, centre automatique et systèmes, Mines Paristech, Centre Automatique et Systmes, Mines-ParisTech, PSL Research University, 75006 Paris, France, Mines ParisTech / ENS Paris, Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider, Centre Automatique et Systèmes, Mines-ParisTech and Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris, France

Authors

  • Zaki Leghtas

    Centre Automatique et Systèmes, Mines ParisTech, centre automatique et systèmes, Mines Paristech, Centre Automatique et Systmes, Mines-ParisTech, PSL Research University, 75006 Paris, France, Mines ParisTech / ENS Paris, Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider, Centre Automatique et Systèmes, Mines-ParisTech and Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris, France