Reactive molecular dynamics simulations and machine learning
Invited
Abstract
Machine learning (ML) is revolutionizing scientific and engineering disciplines owing to its ability to capture hidden patterns in large amounts of data. The recent success of ML can be attributed to increasing amount of data, simulation resources, and improving understanding of statistical inference. For these reasons computational materials science is undergoing a paradigm shift. The main reason is that trial-and-error approach to materials design is inefficient: laboratory trials require a lot of time, and the results of previous trials are not utilized in a systematic fashion. A data-driven approach, which draws upon all relevant data from experiments, and reactive and quantum molecular dynamics simulations, can address these issues. The MAGICS (Materials Genome Innovation for Computational Software) Center develops to aid the synthesis of stacked layered materials by chemical vapor deposition, exfoliation, and intercalation. The identification of different phases can be formulated as a classification problem and can be solved using ML techniques. We have used feed-forward neural network with three hidden layers to identify the different phases present during computational synthesis of MoSe2. Work reported here was carried out in collaboration with Rajiv K. Kalia, Aiichiro Nakano, Lindsay Bassman, Sungwook Hong, Aravind Krishnamoorthy, Kuang Liu, Ankit Mishra, Ken-ichi Nomura, and Pankaj Rajak,
–
Presenters
-
Priya Vashishta
University of Southern California, Physics, University of Southern California, Collaboratory for Advanced Computing and Simulations, University of Southern California, Physics & Astronomy, University of Southern California
Authors
-
Priya Vashishta
University of Southern California, Physics, University of Southern California, Collaboratory for Advanced Computing and Simulations, University of Southern California, Physics & Astronomy, University of Southern California