Generalized Fröhlich model vs accurate first-principles: zero-point renormalisation in polar semiconductors and insulators.
ORAL
Abstract
We compute the ZPR from FP for more than 20 polar binary semiconductors and insulators, and compare these results to those from a generalized Fröhlich model, in which the needed parameters are computed from FP. Despite the lack of Debye-Waller (DW) and interband contributions, we find that the simple Fröhlich approach agrees with FP results within a factor of two for most materials. We analyze the cancellation between the DW and Fan contributions from acoustic modes, and discuss the size of interband contributions in terms of Eliashberg functions. We finally develop a method to estimate the converged ZPR from coarser phonon samplings.
[1] G. Antonius et al, PRB 92, 085137 (2015); S. Poncé et al, J. Chem. Phys. 143, 102813 (2015).
–
Presenters
-
Véronique Brousseau-Couture
Université de Montréal and RQMP, Montréal, Québec, Canada
Authors
-
Véronique Brousseau-Couture
Université de Montréal and RQMP, Montréal, Québec, Canada
-
Anna Miglio
Université Catholique de Louvain, IMCN/NAPS , Louvain-la-Neuve, Belgium, IMCN, Université catholique de Louvain
-
Matteo Giantomassi
Universite catholique de Louvain, Université catholique de Louvain, Université Catholique de Louvain, IMCN/NAPS , Louvain-la-Neuve, Belgium
-
Gabriel Antonius
Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Department of Physics, University of California at Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Department of Physics, University of California at Berkeley, California 94720, USA, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 9
-
Yang-Hao Chan
Department of Physics, University of California at Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californi, Lawrence Berkeley National Lab and University of California, Berkeley
-
Michel Cote
RQMP, Université de Montréal, Université de Montréal and RQMP, Université de Montréal and RQMP, Montréal, Québec, Canada, Universite de Montreal
-
Xavier Gonze
Université catholique de Louvain, Université Catholique de Louvain, IMCN/NAPS , Louvain-la-Neuve, Belgium, IMCN, Université catholique de Louvain, Universite catholique de Louvain