Effective long range interactions generated by polymer fluctuations induce bound particle phase separation

ORAL

Abstract

The confinement of chemical species within the cytoplasm is mandatory for the spatio-temporal organization of chemical activities in the cell. Cells indeed compartmentalize the intracellular space using either membrane-bound vesicles or membrane-less organelles. For the latter, cells may employ phase separation of chemical species in order to create localized high density regions in which specific reactions may occur. Such biological phase separation mechanisms often need polymeric scaffolds such as RNA or DNA to bind the chemical species. We propose a general theoretical 3D framework for such polymer-bound particles from which we derive an effective 1D lattice gas model with both nearest neighbor and long range interactions, the latter arising from polymer fluctuations. We argue that 1D phase transitions exist in such system for both Gaussian and self-avoiding polymers and, using a variational method that goes beyond mean field theory, we obtain the mean occupation/temperature phase diagram. To illustrate this model, we apply it to the biologically relevant case of the ParABS system, a prevalent bacterial DNA segregation system, to study the formation of ParBS complexes on DNA.

Presenters

  • Gabriel David

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France)

Authors

  • Gabriel David

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France)

  • Jean-Charles Walter

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Université de Montpellier, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), CNRS

  • Chase Broedersz

    Ludwig Maximilian University of Munich, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University of Munich, Arnold -Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Arnold Sommerfeld Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilian-Universität München, D-80333 München, Germany, Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen (Germany), Physics, LMU Munich

  • Jérôme Dorignac

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • Frédéric Geniet

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • Andrea Parmeggiani

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • Nils-Ole Walliser

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France)

  • John Palmeri

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), CNRS