Defects and transport in oxide heterostructures
Invited
Abstract
Complex oxide heterostructures have been intensively investigated in recent years. However, the widely used transition-metal oxides suffer from low carrier mobility, which limits device applications. For applications in electronics, attention has shifted to materials such as BaSnO3 and Ga2O3. They have large band gaps, rendering them suitable for transparent conductors and for high-frequency and power electronics, but can be highly n-type doped and exhibit good transport properties. Better control of dopants and point defects is still needed in order to improve materials quality and enable further applications. I will show how cutting-edge first-principles modeling, using advanced hybrid functional calculations within density functional theory, can shed light on the multiple aspects of this problem: band alignment and confinement of two-dimensional electron gases [1,2,3,4], carrier scattering and mobility [5,6], doping [7,8], point defects and their impact on carrier concentrations [8], energetics and electronic structure of alloys [3,4], and optical properties [9,10].
I gratefully acknowledge collaborations with L. Bjaalie, L. Gordon, B. Himmetoglu, A. Janotti, Y. Kang, S. KC, K. Krishnaswamy, J. L. Lyons, H. Peelaers, J. B. Varley, and L. Weston.
[1] L. Bjaalie et al., New J. Phys. 16, 025005 (2014).
[2] K. Krishnaswamy et al., Appl. Phys. Lett. 108, 083501 (2016).
[3] H. Peelaers et al., Phys. Rev. B 92, 085206 (2015).
[4] H. Peelaers et al., Appl. Phys. Lett. 112, 242101 (2018).
[5] K. Krishnaswamy et al., Phys. Rev. B 95, 205202 (2017).
[6] Y. Kang et al., J. Phys.: Condens. Matter 29, 234001 (2017).
[7] H. Peelaers and C. G. Van de Walle, Phys. Rev. B 94, 195203 (2016).
[8] L. Weston et al., Phys. Rev. B 97, 054112 (2018).
[9] H. Peelaers and C. G. Van de Walle, Appl. Phys. Lett. 111, 182104 (2017).
[10] Y. Kang et al., Appl. Phys. Lett. 112, 062106 (2018).
I gratefully acknowledge collaborations with L. Bjaalie, L. Gordon, B. Himmetoglu, A. Janotti, Y. Kang, S. KC, K. Krishnaswamy, J. L. Lyons, H. Peelaers, J. B. Varley, and L. Weston.
[1] L. Bjaalie et al., New J. Phys. 16, 025005 (2014).
[2] K. Krishnaswamy et al., Appl. Phys. Lett. 108, 083501 (2016).
[3] H. Peelaers et al., Phys. Rev. B 92, 085206 (2015).
[4] H. Peelaers et al., Appl. Phys. Lett. 112, 242101 (2018).
[5] K. Krishnaswamy et al., Phys. Rev. B 95, 205202 (2017).
[6] Y. Kang et al., J. Phys.: Condens. Matter 29, 234001 (2017).
[7] H. Peelaers and C. G. Van de Walle, Phys. Rev. B 94, 195203 (2016).
[8] L. Weston et al., Phys. Rev. B 97, 054112 (2018).
[9] H. Peelaers and C. G. Van de Walle, Appl. Phys. Lett. 111, 182104 (2017).
[10] Y. Kang et al., Appl. Phys. Lett. 112, 062106 (2018).
–
Presenters
-
Chris Van de Walle
University of California, Santa Barbara, Materials Department, University of California, Santa Barbara, University of California, Santa Barbara, CA 93106, USA
Authors
-
Chris Van de Walle
University of California, Santa Barbara, Materials Department, University of California, Santa Barbara, University of California, Santa Barbara, CA 93106, USA