Stacking atomic layers one by one: quest for new materials and physics

Invited

Abstract

Modern electronics has been heavily relied on the technology to confine electrons in the interface layers of semiconductors. In recent years, scientists discovered that various atomically thin materials including graphene, a single atomic carbon layer, can be isolated. In these atomically thin materials, quantum physics allows electrons to move only in an effective 2-dimensional (2D) space. By stacking these 2D quantum materials, one can also create atomic-scale heterostructures with a wide variety of electronic and optical properties. I will discuss the creation of new heterostructures based on atomically thin materials and emerging new physics with technological implications therein.

Presenters

  • Philip Kim

    Harvard University, Department of Physics, Harvard University & School of Engineering and Applied Sciences, Harvard University, Department of Physics, Harvard University, Cambridge, MA 02138, USA., Physics, Harvard University, Physics and Applied Physics, Harvard University, Physics department, Harvard University

Authors

  • Philip Kim

    Harvard University, Department of Physics, Harvard University & School of Engineering and Applied Sciences, Harvard University, Department of Physics, Harvard University, Cambridge, MA 02138, USA., Physics, Harvard University, Physics and Applied Physics, Harvard University, Physics department, Harvard University