Universal T-linear resistivity and Planckian dissipation in cuprates

ORAL

Abstract

The perfectly linear temperature dependence of the electrical resistivity observed as T→0 in a variety of metals close to a quantum critical point is a major puzzle of condensed matter physics. Here we show that T-linear resistivity as T→0 is a generic property of cuprates, associated with a universal scattering rate [1]. We measured the low-temperature resistivity of the bi-layer cuprate Bi2212 and found that it exhibits a T-linear dependence with the same slope as in the single-layer cuprates Bi2201, Nd-LSCO and LSCO, despite their very different Fermi surfaces and structural, superconducting and magnetic properties. We then show that the T-linear coefficient (per CuO2 plane), A, is given by the universal relation A TF = h / 2e2, where e is the electron charge, h is the Planck constant and TF is the Fermi temperature. This relation, obtained by assuming that the scattering rate 1 /τ of charge carriers reaches the Planckian limit [2], whereby h /τ = 2π kBT, works not only for hole-doped cuprates but also for electron-doped cuprates, despite the different nature of their quantum critical point and strength of their electron correlations.

[1] Legros et al., Nature Physics (in press); arXiv:1805.02512 (2018).
[2] Bruin et al., Science 339, 804 (2013).

Presenters

  • Louis Taillefer

    University of Sherbrooke (Canada), Université de Sherbrooke, Canada, Physics, Université de Sherbrooke, Universite de Sherbrooke, Universite de Sherbrooke (Canada)

Authors

  • Louis Taillefer

    University of Sherbrooke (Canada), Université de Sherbrooke, Canada, Physics, Université de Sherbrooke, Universite de Sherbrooke, Universite de Sherbrooke (Canada)

  • Anaelle Legros

    Université de Sherbrooke, Canada, Physics, Université de Sherbrooke, Universite de Sherbrooke (Canada)

  • Siham Benhabib

    LNCMI, LNCMI Toulouse, France, LNCMI - CNRS

  • Wojciech Tabis

    LNCMI Toulouse, France

  • Francis Laliberte

    Université de Sherbrooke, Canada, Physics, Université de Sherbrooke, Universite de Sherbrooke (Canada)

  • Maxime Dion

    Université de Sherbrooke, Canada

  • Maude Lizaire

    Université de Sherbrooke, Canada

  • Baptiste Vignolle

    LNCMI Toulouse, France, Institut de Chimie de la Matière Condensée de Bordeaux

  • David Vignolles

    LNCMI Toulouse, France

  • Hélène Raffy

    Université Paris-Sud, France

  • ZZ Li

    Université Paris-Sud, France

  • Pascale Auban-Senzier

    Université Paris-Sud, France

  • Nicolas Doiron-Leyraud

    Université de Sherbrooke, Canada, Universite de Sherbrooke, Universite de Sherbrooke (Canada)

  • Patrick Fournier

    Universite de Sherbrooke, Université de Sherbrooke, Canada, Université de Sherbrooke

  • Dorothée Colson

    CEA Saclay, France, Service de Physique de l'Etat Condensée, CEA Saclay

  • cyril proust

    LNCMI, LNCMI Toulouse, France, LNCMI - CNRS