Bioinspired Computing Leveraging the Physics of Magnetic Nano-Oscillators

Invited

Abstract

Brains display many features typical of non-linear dynamical networks, such as synchronization or chaotic behavior. These observations have inspired a whole class of models that harness the power of complex non-linear dynamical networks for computing. In this framework, neurons are modeled as non-linear oscillators, and synapses as the coupling between oscillators. However, there are few hardware implementations of these systems, because large numbers of interacting non-linear oscillators are necessary. In this talk, we will see why coupled magnetic nano-oscillators are very promising for realizing cognitive computing at the nanometer scale. Then, we will present our experimental and theoretical results. We will show how speech recognition can be performed using the transient dynamics and the synchronization of a few harmonic spin torque oscillators [1]. These results highlight key opportunities and requirements for harnessing spintronic physics for bioinspired computing. We will also show how superparamagnetic oscillators can code and transform information in a robust population-type scheme [2]. These results highlight that some apparently undesirable phenomena like superparamagnetism can become compelling for bioinspired schemes. We will finally discuss how this line of research can take inspiration from both neuroscience and machine learning, and finish by open questions raised by our research.

[1] M. Romera, P. Talatchian, S. Tsunegi, F. A. Araujo, V. Cros, P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli, D. Querlioz and J. Grollier, Nature, Vol. 563, p. 230, 2018.
[2] A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J. Grollier and D. Querlioz, , Nature Communications, Vol. 9, Article number: 1533 (2018).

Presenters

  • Damien Querlioz

    Centre de Nanosciences et de Nanotechnologies, University of Paris-Sud, Univ Paris-Sud

Authors

  • Damien Querlioz

    Centre de Nanosciences et de Nanotechnologies, University of Paris-Sud, Univ Paris-Sud

  • Miguel Romera

    CNRS/Thales

  • Philippe Talatchian

    CNRS/Thales

  • Alice Mizrahi

    CNRS/Thales

  • Damir Vodenicarevic

    Univ Paris-Sud

  • Nicolas Locatelli

    Univ Paris-Sud

  • Fulvio Araujo

    CNRS/Thales

  • Vincent Cros

    Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France, Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau, France, CNRS/Thales, Unité Mixte de Physique CNRS/Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France

  • Paolo Bortolotti

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau, France, CNRS/Thales

  • Juan Trastoy

    CNRS/Thales, Department of Physics and Center for Advanced Nanoscience, University of California, San Diego

  • Maxence Ernoult

    Univ Paris-Sud

  • Tifenn Hirtzlin

    Univ Paris-Sud

  • Sumito Tsunegi

    AIST

  • Akio Fukushima

    AIST

  • Kay Yakushiji

    AIST

  • Hitoshi Kubota

    AIST

  • Shinji Yuasa

    AIST

  • Julie Grollier

    CNRS/Thales lab, CNRS/Thales