Controlled epitaxial growth and oxygen excess doping of the Mott insulator LaTiO3
ORAL
Abstract
Here we demonstrate that thin films of the prototypical Mott insulator LaTiO3 grown by pulsed laser deposition under oxygen atmosphere are readily tuned by excess oxygen doping across the line of the band-filling controlled Mott transition in the electronic phase diagram [1]. The detected insulator to metal transition is characterized by a strong change in resistivity of several orders of magnitude. The use of suitable substrates and capping layers to inhibit oxygen diffusion facilitates full control of the oxygen content and renders the films stable against exposure to ambient conditions. These achievements represent a significant advancement in control and tuning of the electronic properties of LaTiO3+x thin films making it a promising channel material in future Mottronic devices.
[1] P. Scheiderer, M.Schmitt, J. Gabel, M. Zapf, M. Stübinger, P.Schütz, L. Dudy, C. Schlueter, T.-L.
Lee, M.Sing, and R. Claessen, Adv. Mater. 30, 1706708 (2018)
[1] P. Scheiderer, M.Schmitt, J. Gabel, M. Zapf, M. Stübinger, P.Schütz, L. Dudy, C. Schlueter, T.-L.
Lee, M.Sing, and R. Claessen, Adv. Mater. 30, 1706708 (2018)
–
Presenters
-
Michael Sing
Universität Würzburg, Germany
Authors
-
Ralph Claessen
Universität Würzburg, Germany
-
Philipp Scheiderer
Universität Würzburg, Germany
-
Matthias Schmitt
Universität Würzburg, Germany
-
Judith Gabel
Universität Würzburg, Germany
-
Michael Zapf
Universität Würzburg, Germany
-
Martin Stübinger
Universität Würzburg, Germany
-
Philipp Schütz
Universität Würzburg, Germany
-
Lenart Dudy
Universität Würzburg, Germany
-
Christoph Schlueter
Diamond Light Source, UK
-
Tien-Lin Lee
Diamond Light Source, Diamond Light Source, UK
-
Michael Sing
Universität Würzburg, Germany