Strange metallicity in the doped Hubbard model

ORAL

Abstract

Strange or bad metallic transport, defined by its incompatibility with conventional quasiparticle pictures, is a theme common to strongly correlated materials and ubiquitous in many high temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 the non-interacting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.

Presenters

  • Edwin Huang

    Stanford University, SLAC National Accelerator Laboratory

Authors

  • Edwin Huang

    Stanford University, SLAC National Accelerator Laboratory

  • Ryan Sheppard

    Stanford University

  • Brian Moritz

    Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, SLAC National Accelerator Laboratory, SLAC and Stanford University, Institute for Materials and Energy Science, Stanford, SSRL Materials Science Division, SLAC National Accelerator Laboratory and Stanford University

  • Thomas Devereaux

    Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, SLAC National Accelerator Laboratory, Physics, Stanford University, SLAC and Stanford University, Institute for Materials and Energy Science, Stanford, SIMES, SLAC National Accelerator Lab, SLAC National Accelerator Laboratory and Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC, Stanford, SIMES, SLAC, and Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University