Biomolecules for non-biological things: 1-D and 2-D polymer formation through peptide design and solution assembly
ORAL
Abstract
A new solution assembled system comprised of theoretically designed coiled coil bundle motifs will be introduced. The molecules and nanostructures are not natural sequences and provide opportunity for arbitrary nanostructure creation with peptides. With control of the display of all amino acid side chains (both natural and non-natural) throughout the peptide bundles, desired physical and covalent (through appropriate “click” chemistry) interactions have been designed to produce one and two-dimensional nanostructures. One-dimensional nanostructures span exotically rigid rod molecules that produce a wide variety of liquid crystal phases to semi-flexible chains, the flexibility of which are controlled by the interbundle linking chemistry. The two dimensional nanostructure is formed by physical interactions and are nanostructures not observed in nature. All of the assemblies are responsive to temperature since the individual bundle building blocks are physically stabilized coiled coil bundles that can be melted and reformed with temperature. Additional, novel nanostructures to be discussed include uniform nanotubes as well as the templated growth of metallic nanoparticle on and in peptide nanostructures.
–
Presenters
-
Darrin Pochan
University of Delaware, Materials Science & Engineering, University of Delaware, DE
Authors
-
Darrin Pochan
University of Delaware, Materials Science & Engineering, University of Delaware, DE