The role of particle shape in the deformation and disruption of lipid membranes : Experiments with tunable particle shape and adhesion
ORAL
Abstract
We seek to understand the effects of DNA origami nano-rods on membrane structure and morphology. We combine giant unilamellar lipid vesicles (GUVs) with a sufficiently high concentration of oppositely charged nano-rods and observe the interactions. The adhesion of the nano-rods to the membrane is a tunable parameter controlled by the lipid composition, and results in three primary behaviors. At weak adhesion strengths, vesicles adhere to one another and form a stable gel, with the nano-rods acting as a glue that holds the gel together. At intermediate adhesion strengths, gel forms but is subsequently destroyed by avid binding of the nano-rods. At higher adhesion strengths, the vesicles are ruptured by the nano-rods without ever forming a gel. These behaviors can be explained respectively by shallow, deep, or complete wrapping of the nano-rods onto the lipid membrane. These results are a robust example of tuning response in a synthetic membrane system and provide a physical understanding of the design principles toward controlled membrane morphologies. These results will lead to a bio-inspired membrane material that is stimuli-responsive, has high surface area and is reconfigurable.
–
Presenters
-
Sarah Zuraw
University of Massachusetts Amherst
Authors
-
Sarah Zuraw
University of Massachusetts Amherst
-
Anthony Dinsmore
Physics, University of Massachusetts Amherst, University of Massachusetts Amherst, Physics, University of Massachusetts, Amherst
-
Mahsa Siavashpouri
physics, Brandeis University
-
Zvonimir Dogic
Physics, University of California, Santa Barbara, UC Santa Barbara, Physics, University of California Santa Barbara, University of California, Santa Barbara, UCSB, Department of Physics, University of California at Santa Barbara