Quantum tomography of electrical currents

ORAL

Abstract

Recent developments in quantum nanoelectronics have enabled the realization of electron sources emitting a quantized number of excitations. However, reconstructing all wavefunctions of the elementary excitations embedded in electrical currents was still out of reach.
Combining two-electron Hong-Ou-Mandel interferometry [1] with signal processing techniques, we demonstrate a quantum tomography protocol [2, 3, 4] able of extracting from any electrical current the generated electron and hole wavefunctions as well as their emission probabilities. The interferometer is implemented in a 2D electron gas in the integer quantum Hall effect where charges propagate along 1D ballistic edge channels. First we demonstrate the protocol with sinusoidal currents which allow for simple comparison with theoretical predictions. Then we turn to periodic single electron Lorentzian pulses and show that thermal effects lead to the generation of a statistical mixture between two single-electron wavefunctions.
[1]E.Bocquillon et al. Science 339, 1054 (2013)
[2]C.Grenier et al. NJP 13, 093007 (2011)
[3]T.Jullien et al. Nature 514, 603 (2014)
[4]A.Marguerite et al. arXiv:1710.11181

Presenters

  • REMI BISOGNIN

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS

Authors

  • REMI BISOGNIN

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS

  • Benjamin Roussel

    Laboratoire de Physique, ENS de Lyon - CNRS

  • Camille Chapdelaine

    Laboratoire des signaux et systèmes, Centrale-Supélec CNRS

  • Arthur Marguerite

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS

  • Manohar Kumar

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS

  • Cl�ment Cabart

    Laboratoire de Physique, ENS de Lyon - CNRS

  • Ali Mohammed-Djafari

    Laboratoire des signaux et systèmes, Centrale-Supélec CNRS

  • Jean-Marc Berroir

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS, Laboratoire Pierre Aigrain, Paris, France, Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS, PSL Research University, Université Pierre et Marie Curie, Sorbonne Universités, Université Denis Diderot, Laboratoire Pierre Aigrain, CNRS - Ecole Normale Supérieure

  • Erwann Bocquillon

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS, Laboratoire Pierre Aigrain, Paris, France, Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS, PSL Research University, Université Pierre et Marie Curie, Sorbonne Universités, Université Denis Diderot, Laboratoire Pierre Aigrain, CNRS - Ecole Normale Supérieure

  • Bernard Plaçais

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS, Laboratoire Pierre Aigrain, Paris, France, Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS, PSL Research University, Université Pierre et Marie Curie, Sorbonne Universités, Université Denis Diderot, Laboratoire Pierre Aigrain, CNRS - Ecole Normale Supérieure

  • Antonella Cavanna

    Centre de Nanosciences et Nanotechnologies, C2N-Marcoussis CNRS

  • Ulf Gennser

    Centre de Nanosciences et Nanotechnologies, C2N-Marcoussis CNRS

  • Young Jin

    Centre de Nanosciences et Nanotechnologies, C2N-Marcoussis CNRS

  • Pascal Degiovanni

    Ecole Normale Superieure de Lyon, Laboratoire de Physique, ENS de Lyon - CNRS

  • Gwendal Fève

    Laboratoire Pierre Aigrain, Ecole Normale Supérieure (Paris), Laboratoire Pierre Aigrain, Ecole Normale Supérieure - CNRS, Laboratoire Pierre Aigrain, Paris, France, Laboratoire Pierre Aigrain, CNRS - Ecole Normale Supérieure