Accurate and Data-Efficient Machine Learning Force Fields for Periodic Systems

ORAL

Abstract

It remains a substantial challenge to develop machine learning force fields that combine accuracy, efficiency, and physical interpretability, especially for complex periodic systems. In this work, we present an extension of the symmetrized gradient-domain machine learning (sGDML) framework [1][2] for periodic systems, which allows the construction of accurate molecular force fields with high data efficiency. We test this implementation in a variety of systems, including 2D materials, bulk materials and surfaces, for which we achieved errors of less than 1 kcal/mol/Å for atomic forces using less than 100 training points. Furthermore, in the particular case of graphene this error was achieved training on 20 samples. The low errors from sGDML calculations on phonon dispersion relations and thermodynamic properties compared to those obtained directly from DFT further confirm the predictive power of the model. These results extend the applicability of machine learning to increasingly complex periodic materials.

[1] Chmiela et al. Sci. Adv. 3 (5), e1603015 (2017); Nat. Commun. 9 (1), 3887 (2108); Comput. Phys. Commun. 240, 38 (2019).
[2] Sauceda et al. J. Chem. Phys. 150 (11), 114102 (2019); arXiv:1909.08565 (2019).

Presenters

  • Luis Gálvez-González

    Programa de Doctorado en Ciencias (Física), Universidad de Sonora

Authors

  • Luis Gálvez-González

    Programa de Doctorado en Ciencias (Física), Universidad de Sonora

  • Huziel Sauceda

    Tech Univ Berlin, Machine Learning Group, Technische Universität Berlin

  • Stefan Chmiela

    Tech Univ Berlin, Machine Learning Group, Technische Universität Berlin

  • Alvaro Posada-Amarillas

    Departamento de Investigación en Física, Universidad de Sonora

  • Lauro Oliver Paz-Borbón

    Instituto de Física, Universidad Nacional Autónoma de México

  • Klaus-Robert Müller

    Tech Univ Berlin, Machine Learning Group, Technische Universität Berlin

  • Alexandre Tkatchenko

    Physics and Materials Science Reasearch Unit, University of Luxembourg, Physics and Materials Science Research Unit, University of Luxembourg, University of Luxembourg, University of Luxembourg Limpertsberg