Machine Learning Defect Properties of Semiconductors
ORAL
Abstract
–
Publication: 1. A. Mannodi-Kanakkithodi et al., "Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide", Chemistry of Materials 31 (10), 3599–3612 (2019).
2. A. Mannodi-Kanakkithodi et al., "Machine learned impurity level prediction in semiconductors: the example of Cd-based chalcogenides", npj Computational Materials 6, 39 (2020).
3. A. Mannodi-Kanakkithodi et al., "Defect Energetics in Pseudo-Cubic Mixed Halide Lead Perovskites from First-Principles", Journal of Physical Chemistry C. 124, 31, 16729–16738 (2020).
4. F. G. Sen et al., "Computational Design of Passivants for CdTe Grain Boundaries", Solar Energy Materials and Solar Cells 232, 111279 (2021).
5. A. Mannodi-Kanakkithodi et al., "Universal Machine Learning Framework for Impurity Level Prediction in Group IV, III-V and II-VI Semiconductors", under review. PREPRINT: https://doi.org/10.21203/rs.3.rs-723035/v1 (2021).
6. A. Mannodi-Kanakkithodi et al., "Accelerated Screening of Functional Atomic Impurities in Halide Perovskites using High-Throughput Computations and Machine Learning", under review.
7. M. P. Polak et al., "Machine Learning for Impurity Charge-State Transition Levels in Semiconductors from Elemental Properties using Multi-Fidelity datasets", under review.
Presenters
-
Arun Kumar Mannodi Kanakkithodi
Purdue University
Authors
-
Arun Kumar Mannodi Kanakkithodi
Purdue University
-
Xiaofeng Xiang
University of Washington
-
Jiaqi Yang
Purdue University
-
Laura Jacoby
University of Washington
-
Maria K Chan
Argonne National Laboratory