Metal to correlated insulator crossover in 1T-TaSe2

ORAL

Abstract

Materials hosting charge density wave (CDW) may exhibit drastically different properties as compared with their normal states. Among them, 1T tantalum dichalcogenides develop a unique star-of-David CDW and are predicted to be Mott insulators and hosts of quantum spin liquids (QSL). 1T-TaSe2 is a promising material platform in this family with a robust CDW order and a much cleaner phase diagram, despite the observed metallic behavior in the bulk. Recent results have showed interlayer interactions and stacking order may obfuscate the physics and mask out the strong correlation in the system. On the other hand, advances in layered van der Waals materials provides direct access to individual layer properties and therefore make the “bottom-up” study of complicated systems possible. With TaSe2 devices down to bilayer thickness, we observed a crossover from metallic properties in the bulk to correlated insulating properties in the atomically thin 1T-TaSe2 due to the suppression of the hybridization between Ta 5dz2 orbitals and Se 4pz orbitals with transport and tunneling measurements. We further investigated the magnetic ground state of monolayer 1T-TaSe2 with thermally induced 1T/1H heterostructures. The existence of localized magnetic moments was confirmed, and we established the system as a promising quantum spin liquid candidate.

Presenters

  • Siqi Wang

    University of California, Berkeley, Yale University

Authors

  • Siqi Wang

    University of California, Berkeley, Yale University

  • Yi Chen

    University of California, Berkeley

  • Peiyao Zhang

    Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA, University of California Berkeley, University of California at Berkeley

  • Sui Yang

    University of California, Berkeley

  • Takashi Taniguchi

    National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Kyoto Univ, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan., 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), International Center for Materials Nanoarchitectonics, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Kyoto University, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for MaterialsScience, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Japan, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan., NIMS, Japan, National Institute for Materials Science (NIMS), NIMS. Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, International Center for Material Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Ibaraki 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, International Center for Materials Nanoarchitectonics, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

  • Kenji Watanabe

    National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, NIMS, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan., Research Center for Functional Materials, National Institute for Materials Science, Advanced, Materials Laboratory, NIMS, 3 National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science; 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Materials Science, Tsukuba, Japan, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute for Materials Science (Japan), National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan, Research Center for Functional Materials, National Institute for Materials Science, Japan, Research Center for Functional Materials, National Institute for Materials Science, 1-1Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, Japan, National Institute for Material Science, National Institute of Material Sciences, Japan, NIMS, Tsukuba, 2National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science Japan, NIMS, Japan, nims, National Institute for Materials Science, Research Center for Functional Materials, Japan, National Institute for Materials Science Tsukuba, National Institute for Materials Science, 1-1 Namiki, National Institute for Materials Science of Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS - National Institute for Material Science, Japan, Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, 305-0044, Japan., National Institute for Material Science, Tsukuba, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science (NIMS), National Institute for Materials Science, Research Center for Functional Materials, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, National Institute of Material Science, Kyoto Univ, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan

  • Kai Rossnagel

    Univ Kiel

  • Michael F Crommie

    University of California, Berkeley

  • Xiang Zhang

    University of California, Berkeley