Machine Learning for tuning, controlling, and optimizing semiconductor spin qubits
ORAL · Invited
Abstract
In the first course tuning step, our machine-learning algorithms find and energize hole and electron quantum dots faster than human experts. Then, supported by a physical model, another algorithm searches a large dimensional parameter space for signatures of spin effects necessary to operate and read out spin qubit systems. Finally, we report on automated quality optimization of an all-electrical hole spin qubit by changing relevant system parameters such as magnetic and electric fields, read-out position, driving strength, and qubit energy.
We believe that such AI-based procedures will be crucial for controlling more extensive and complex spin qubit networks required in a quantum processor.
–
Publication: 1. Identifying Pauli spin blockade using deep learning.
J. Schuff, D.T. Lennon, S. Geyer, D. Craig, F. Fedele, F. Vigneau, L.C. Camenzind, A.V. Kuhlmann, R.J. Warburton, D.M. Zumbühl, D. Sejdinovic, G.A.D. Briggs, N. Ares. Planned Paper (2021).
2. Cross-architecture Tuning of Silicon and SiGe-based Quantum Devices Using Machine Learning.
B. Severin, D. T. Lennon, L. C. Camenzind, F. Vigneau, F. Fedele, D. Jirovec, A. Ballabio, D. Chrastina, G. Isella, M. de Kruijf, M. J. Carballido, S. Svab, A. V. Kuhlmann, F. R. Braakman, S. Geyer, F. N. M. Froning, H. Moon, M. A. Osborne, D. Sejdinovic, G. Katsaros, D. M. Zumbühl, G. A. D. Briggs, and N. Ares. Preprint, arXiv:2107.12975 (2021).
3. Deep Reinforcement Learning for Efficient Measurement of Quantum Devices.
V. Nguyen*, S. B. Orbell*, D.T. Lennon, H. Moon, F. Vigneau, L.C. Camenzind, L. Yu, D.M. Zumbühl,
G.A.D. Briggs, M. A. Osborne, D. Sejdinovic, and N. Ares. npj Quantum Information 7, 100 (2021).
4. Quantum device fine-tuning using unsupervised embedding learning.
N.M. van Esbroeck, D.T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L.C. Camenzind, L. Yu,
D.M. Zumbühl, G.A.D. Briggs, D. Sejdinovic, and N. Ares. New J. Phys. 22 09503 (2020)
5. Machine learning enables completely automatic tuning of a quantum device faster than human experts.
H. Moon*, D.T. Lennon*, J. Kirkpatrick, N.M. van Esbroeck, L.C. Camenzind, Liuqi Yu, F. Vigneau, D.M. Zumbühl, G.A.D. Briggs, M.A Osborne, D. Sejdinovic, E.A. Laird, N. Ares. Nature Communications 11, 4161 (2020)
6. Efficiently measuring a quantum device using machine learning.
D. T. Lennon, H. Moon, L. C. Camenzind, Liuqi Yu, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, E. A. Laird, N. Ares. npj Quantum Information 5, 79 (2019)
Presenters
-
Dominic T Lennon
University of Oxford
Authors
-
Leon Camenzind
University of Basel
-
Dominic T Lennon
University of Oxford
-
Vu Nguyen
University of Oxford
-
Brandon Severin
University of Oxford
-
Nina M van Esbroeck
University of Oxford
-
James Kirkpatrick
DeepMind, London, UK
-
Sebastian Orbell
University of Oxford
-
Hyungil Moon
University of Oxford
-
Jonas Schuff
University of Oxford
-
Florian Vigneau
University of Oxford
-
Liuqi Yu
University of Maryland, College Park, University of Basel
-
Simon Geyer
University of Basel
-
Andreas V Kuhlmann
University of Basel
-
Florian N Froning
University of Basel
-
Dino Sejdinovic
University of Oxford
-
Michael A Osborne
University of Oxford
-
Edward A Laird
Lancaster University
-
G. Andrew D Briggs
University of Oxford
-
Dominik M Zumbuhl
University of Basel
-
Natalia Ares
University of Oxford