Quantum Entanglement Characterization of Kondo-destruction Quantum Critical Points
ORAL
Abstract
Heavy fermion metals are made of a lattice of local moments undergoing Kondo effect. A
Kondo-destruction Quantum Critical Point (QCP) separates the Kondo and RKKY
dominated phases. The suppression of the Kondo effect is signified by a jump from “large”
to “small” Fermi surface across the QCP [1,2]. While the static amplitude for the Kondo
singlet vanishes on this side of the QCP, there are non-zero Kondo correlations usually
called dynamical Kondo effect[3,4]. Entanglement is one way to probe the local moment
dynamics in these strongly-correlated systems[5,6]. We consider Kondo destruction QCP
of both the Bose-Fermi Kondo model and the Kondo lattice, and calculate entanglement
entropy and mutual information to characterize the competition of the RKKY, Kondo
interactions across the QCP and the dynamical Kondo effect.
[1] H. Hu et al., arXiv:2210.14183. Q. Si et al., Nature 413, 804–808 (2001).
[2] S. Paschen and Q. Si, Nat. Phys. Rev. 3, 9 (2021). S. Kirchner et al., Rev. Mod. Phys.
92, 011002 (2020).
[3] A. Cai et al., Phys. Rev. Lett. 124, 027205 (2020).
[4] L. Prochaska et al. Science 367, 285 (2020).
[5] H. Hu et al., arXiv:2004.04679 (2020).
[6] M. Mahankali et al., in preparation.
Kondo-destruction Quantum Critical Point (QCP) separates the Kondo and RKKY
dominated phases. The suppression of the Kondo effect is signified by a jump from “large”
to “small” Fermi surface across the QCP [1,2]. While the static amplitude for the Kondo
singlet vanishes on this side of the QCP, there are non-zero Kondo correlations usually
called dynamical Kondo effect[3,4]. Entanglement is one way to probe the local moment
dynamics in these strongly-correlated systems[5,6]. We consider Kondo destruction QCP
of both the Bose-Fermi Kondo model and the Kondo lattice, and calculate entanglement
entropy and mutual information to characterize the competition of the RKKY, Kondo
interactions across the QCP and the dynamical Kondo effect.
[1] H. Hu et al., arXiv:2210.14183. Q. Si et al., Nature 413, 804–808 (2001).
[2] S. Paschen and Q. Si, Nat. Phys. Rev. 3, 9 (2021). S. Kirchner et al., Rev. Mod. Phys.
92, 011002 (2020).
[3] A. Cai et al., Phys. Rev. Lett. 124, 027205 (2020).
[4] L. Prochaska et al. Science 367, 285 (2020).
[5] H. Hu et al., arXiv:2004.04679 (2020).
[6] M. Mahankali et al., in preparation.
* Work supported by the NSF (DMR-2220603) and AFOSR (FA9550-21-1-0356).
–
Presenters
-
Mounica Mahankali
Rice University
Authors
-
Mounica Mahankali
Rice University
-
Yuan Fang
Rice University
-
Lei Chen
Rice University
-
Yiming Wang
Rice University
-
Haoyu Hu
Donostia International Physics Center
-
Qimiao Si
Rice University