Machine Learning for Materials Science I
FOCUS · A18 · ID: 2155858
Presentations
-
Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks
ORAL · Invited
–
Presenters
-
Antonia Statt
University of Illinois at Urbana-Champaign
Authors
-
Antonia Statt
University of Illinois at Urbana-Champaign
-
-
Active Learning for Discovering Complex Phase Diagrams with Gaussian Processes
ORAL
–
Presenters
-
Chunjing Jia
University of Florida
Authors
-
Chunjing Jia
University of Florida
-
Max Zhu
University of Cambridge
-
Jian Yao
Southern University of Science and Technology
-
Marcus Mynatt
University of Florida
-
Hubert Pugzlys
University of Florida
-
Shuyi Li
University of Florida
-
Sergio Bacallado
University of Cambridge
-
Qingyuan Zhao
University of Cambridge
-
-
Data-driven studies of two-dimensional materials and their nonlinear optical properties
ORAL
–
Presenters
-
Kai Wagoner-Oshima
Rensselear Polytechnic Institute
Authors
-
Kai Wagoner-Oshima
Rensselear Polytechnic Institute
-
Romakanta Bhattarai
Rensselaer Polytechnic Institute
-
Trevor David Rhone
Rensselaer Polytechnic Institute
-
-
Using Data to Enhance Mechanistic Modeling of Microstructure Evolution in Silicon
ORAL · Invited
–
Publication: [1] Y. Yang, A. Sattler, and T. Sinno, Data-Assisted Physical Modeling of Oxygen Precipitation in Silicon Wafers, J. Appl. Phys. 125 (2019), 165705.
[2] C. Y. Chuang, S. M. Han, L. A. Zepeda-Ruiz, and T. Sinno, On Coarse Projective Integration for Atomic Deposition in Amorphous Systems, J. Chem. Phys. 143 (2015) 134703.
[3] C. Y. Chuang, Q. Li, D. Leonhardt, S. M. Han, and T. Sinno, Atomistic Analysis of Germanium on Amorphous SiO2 using an Empirical Interatomic Potential, Surf. Sci. 609 (2013) 221.Presenters
-
Talid Sinno
University of Pennsylvania
Authors
-
Talid Sinno
University of Pennsylvania
-
-
Data-Driven Models for Predicting Stability of Electrocatalysts in Aqueous Environments
ORAL
–
Presenters
-
Seda Oturak
Pennsylvania State University, The Pennsylvania State University
Authors
-
Seda Oturak
Pennsylvania State University, The Pennsylvania State University
-
Ismaila Dabo
Pennsylvania State University, The Pennsylvania State University
-
-
ChemChat | Conversational Expert Assistant in Material Science and Data Visualization
ORAL
–
Publication: 1) Accepted Book Chapter: Language models in molecular discovery (https://arxiv.org/abs/2309.16235)
2) Submitted to NeurIPS 2023 Workshop AI4Science under Attention Track and abstract #64: Large Language Models in Molecular DiscoveryPresenters
-
Tim Erdmann
IBM Research - Almaden
Authors
-
Tim Erdmann
IBM Research - Almaden
-
Sarathkrishna Swaminathan
IBM Research - Almaden
-
Stefan Zecevic
IBM Research - Almaden
-
Brandi Ransom
IBM Research - Almaden
-
Nathan Park
IBM Research - Almaden
-
-
Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance
ORAL
–
Presenters
-
Lucas Foppa
Fritz Haber Institute of the Max Planck Society
Authors
-
Lucas Foppa
Fritz Haber Institute of the Max Planck Society
-
Matthias Scheffler
The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, The NOMAD Laboratory at the Fritz Haber Institute of the MPG, The NOMAD Laboratory at the FHI of the Max Planck Society
-
-
Equivarient Electron Density Predictions Accelerate Density Functional Theory Calculations
ORAL
–
Presenters
-
Eric Taw
MIT Lincoln Laboratory
Authors
-
Thomas Koker
MIT Lincoln Laboratory
-
Keegan Quigley
MIT Lincoln Laboratory
-
Eric Taw
MIT Lincoln Laboratory
-
Lin Li
MIT Lincoln Laboratory
-
-
Generative neural networks for synthetic PBX microstructures with varying levels of damage to evaluate shock sensitivity through meso-scale simulations
ORAL
–
Presenters
-
Irene Fang
University of Iowa
Authors
-
Irene Fang
University of Iowa
-
-
Recent Advancements in SISSO as Applied to Thermal Conductivity
ORAL
–
Publication: T. A. R. Purcell et al. J. Chem. Phys. 159, 114110 (2023)
T. A. R. Purcell et al. npj Comput. Mater. 9, 112 (2023)Presenters
-
Thomas A Purcell
The NOMAD Laboratory at the FHI of the MPG, The University of Arizona
Authors
-
Thomas A Purcell
The NOMAD Laboratory at the FHI of the MPG, The University of Arizona
-
Matthias Scheffler
The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, The NOMAD Laboratory at the Fritz Haber Institute of the MPG, The NOMAD Laboratory at the FHI of the Max Planck Society
-
-
Closed-Loop Control of Non-Newtonian Fluid Flow Using Machine Learning
ORAL
–
Presenters
-
Xin Zhang
University of Massachusetts Amherst
Authors
-
Xin Zhang
University of Massachusetts Amherst
-
Huilu Bao
University of Massachusetts Amherst
-
Xiaoyu Zhang
University of Massachusetts Amherst
-
Xiao Fan
University of Massachusetts Amherst
-
Jinglei Ping
University of Massachusetts Amherst
-