Long-range-enhanced surface codes

ORAL

Abstract

The surface code is a quantum error-correcting code for one logical qubit, protected by spatially localized parity checks in two dimensions. Due to fundamental constraints from spatial locality, storing more logical qubits requires either sacrificing the robustness of the surface code against errors or increasing the number of physical qubits. We bound the minimal number of spatially non-local parity checks necessary to add logical qubits to a surface code while maintaining, or improving, robustness to errors. We asymptotically saturate this bound using a family of hypergraph product codes, interpolating between the surface code and constant-rate low-density parity-check codes. Fault-tolerant protocols for logical operations generalize naturally to these longer-range codes, based on those from ordinary surface codes. We provide near-term practical implementations of this code for hardware based on trapped ions or neutral atoms in mobile optical tweezers. Long-range-enhanced surface codes outperform conventional surface codes using hundreds of physical qubits, and represent a practical strategy to enhance the robustness of logical qubits to errors in near-term devices.

* US Office of Naval Research, Alfred P. Sloan Foundation, National Institute of Standards and Technology, Swiss National Science Foundation

Publication: https://arxiv.org/abs/2309.11719

Presenters

  • Yifan Hong

    University of Colorado, Boulder

Authors

  • Yifan Hong

    University of Colorado, Boulder

  • Matteo Marinelli

    University of Colorado, Boulder and JILA

  • Adam M Kaufman

    JILA,CU Boulder

  • Andrew Lucas

    University of Colorado, Boulder