AI and ML in Monte Carlo and molecular dynamics simulations
FOCUS · D18 · ID: 2155852
Presentations
-
Free Energy, Conformationa Dynamics and Simulations of Nanocrystals with Explicit Ligands
ORAL · Invited
–
Publication: None
Presenters
-
Alex Travesset
Iowa State University and Ames National Laboratory, Ames Lab
Authors
-
Alex Travesset
Iowa State University and Ames National Laboratory, Ames Lab
-
-
Evaluating approaches for on-the-fly machine-learning interatomic potentials for activated mechanisms sampling with ARTn
ORAL
–
Publication: Eugène Sanscartier, Félix Saint-Denis, Karl-Étienne Bolduc, Normand Mousseau; Evaluating approaches for on-the-fly machine learning interatomic potentials for activated mechanisms sampling with the activation-relaxation technique nouveau. J. Chem. Phys. 28 June 2023; 158 (24): 244110. https://doi.org/10.1063/5.0143211
Presenters
-
Eugene Sanscartier
Universite de Montreal
Authors
-
Eugene Sanscartier
Universite de Montreal
-
Normand Mousseau
Universite de Montreal
-
-
Development of MLIP to model corrosion behavior in Molten Salt Reactors
ORAL
–
Presenters
-
Matthew D Bruenning
Missouri State University
Authors
-
Matthew D Bruenning
Missouri State University
-
Ridwan Sakidja
Missouri State University
-
-
Machine learning assisted design of effective potentials, surface ligand patterns, and annealing protocols for colloidal self-assembly
ORAL · Invited
–
Presenters
-
Gaurav Arya
Duke University
Authors
-
Gaurav Arya
Duke University
-
Yilong Zhou
Duke University
-
Po-An Lin
Duke University
-
Safak Callioglu
Duke University
-
Sigbjorn L Bore
UC San Diego
-
Simiao Ren
Duke University
-
Yunqi Yang
Duke University
-
Andrea Tao
UC San Diego
-
Leslie Collins
Duke University
-
Francesco Paesani
University of California, San Diego
-
Yonggang Ke
Duke University
-
Stefan Zauscher
Duke University
-
-
How to use stochastic devices in probabilistic calculations
ORAL
–
Presenters
-
Shashank Misra
Sandia National Laboratories
Authors
-
Shashank Misra
Sandia National Laboratories
-
Christopher R Allemang
Sandia National Laboratories
-
Christopher D Arose
Sandia National Laboratories
-
Brady G Taylor
Duke University
-
Andre Dubovskiy
New York University, Department of Physics, New York University (NYU)
-
Ahmed Sidi El Valli
New York University, Department of Physics, New York University (NYU)
-
Laura Rehm
New York University, Department of Physics, New York University (NYU)
-
Andrew Haas
New York University, Department of Physics, New York University (NYU)
-
Andrew D Kent
New York University, Department of Physics, Department of Physics, New York University, New York University
-
Leslie C Bland
Temple University
-
Suma G Cardwell
Sandia National Laboratories
-
Darby Smith
Sandia National Laboratories
-
James B Aimone
Sandia National Laboratories
-
-
First-principles machine-learning quantum dynamics at 0K in SrTiO<sub>3</sub>: light-induced ultrafast ferroelectric transition
ORAL
–
Presenters
-
Francesco Libbi
Harvard University
Authors
-
Francesco Libbi
Harvard University
-
Lorenzo Monacelli
Ecole Politecnique Federal de Lausanne
-
Anders Johansson
Harvard University
-
Boris Kozinsky
Harvard University
-
-
Diverse training data generation for machine-learning interatomic potentials
ORAL
–
Presenters
-
Aparna P. A. Subramanyam
Los Alamos National Laboratory
Authors
-
Aparna P. A. Subramanyam
Los Alamos National Laboratory
-
Danny Perez
Los Alamos Natl Lab, Los Alamos National Laboratory
-
-
A machine learning interatomic potential for Ge-Te alloys
ORAL
–
Presenters
-
Tom Arbaugh
Wesleyan University
Authors
-
Tom Arbaugh
Wesleyan University
-
Owen Dunton
Wesleyan University
-
Francis W Starr
Wesleyan University
-
-
Machine learned force and torque predictions for molecular dynamics of non-spherical colloids
ORAL
–
Presenters
-
Bahadir Rusen Argun
University of Illinois at Urbana-Champaign
Authors
-
Bahadir Rusen Argun
University of Illinois at Urbana-Champaign
-
Antonia Statt
University of Illinois at Urbana-Champaign
-
-
Machine Learning Models for Partition Functions: Predicting Thermodynamic Properties and Exploring Transition Pathways
ORAL
–
Presenters
-
Caroline Desgranges
University of Massachusetts Lowell
Authors
-
Caroline Desgranges
University of Massachusetts Lowell
-
Jerome Delhommelle
University of Massachusetts, Lowell
-