Machine Learning of Molecules and Materials: Chemical Space and Dynamics
FOCUS · D60 · ID: 2159491
Presentations
-
Quantum Machine Learning
ORAL · Invited
–
Presenters
-
O. Von Lilienfeld
University of Toronto, Vector Institute, Technical University of Berlin
Authors
-
O. Von Lilienfeld
University of Toronto, Vector Institute, Technical University of Berlin
-
-
Machine learning and many-body molecular interactions
ORAL
–
Publication: A "short blanket" dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying physics?, Y. Zhai, A. Caruso, S.L. Bore, Z. Luo, F. Paesani, J. Chem. Phys. 158, 084111 (2023)
Presenters
-
Francesco Paesani
University of California, San Diego
Authors
-
Francesco Paesani
University of California, San Diego
-
-
Thermodynamic and electronic properties of water and ice: joining machine learning and manybody perturbation theory
ORAL
–
Presenters
-
Davide Donadio
University of California Davis
Authors
-
Davide Donadio
University of California Davis
-
Margaret Berrens
University of California Davis
-
Arpan Kundu
University of Chicago
-
Zekun Chen
University of California Davis
-
Marcos Calegari Andrade
Lawrence Livermore National Lab
-
Tuan Anh Pham
Lawrence Livermore Natl Lab
-
Giulia Galli
University of Chicago
-
-
Accurate thermodynamic tables for solids using Machine Learning Interaction Potentials and Covariance of Atomic Positions
ORAL
–
Presenters
-
Mgcini K Phuthi
University of Michigan
Authors
-
Mgcini K Phuthi
University of Michigan
-
Yang Huang
Carnegie Mellon Univ
-
Michael Widom
Carnegie Mellon University
-
Ekin D Cubuk
Google LLC
-
Venkat Viswanathan
University of Michigan, Carnegie Mellon University
-
-
AI-enhanced chemical physics simulations
ORAL · Invited
–
Publication: [1] P. O. Dral, M. Barbatti. Nat. Rev. Chem. 2021, 5, 388.
[2] P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral. Nat. Commun. 2021, 12, 7022.
[3] A. Ullah, P. O. Dral. Nat. Commun. 2022, 13, 1930.
[4] F. Ge, L. Zhang, Y.-F. Hou, Y. Chen, A. Ullah, P. O. Dral. J. Phys. Chem. Lett. 2023, 14, 7732.
[5] P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro Jr,
Y. Su, Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. J. Chem. Theory Comput. 2023,
accepted. See MLatom.com @ XACScloud.com.Presenters
-
Pavlo Dral
Xiamen University
Authors
-
Pavlo Dral
Xiamen University
-
-
Learning polarization using equivariant neural networks
ORAL
–
Presenters
-
Stefano Falletta
Harvard University
Authors
-
Stefano Falletta
Harvard University
-
Andrea Cepellotti
Harvard University
-
Albert Musaelian
Harvard University
-
Anders Johansson
Harvard University
-
Chuin Wei Tan
Harvard University
-
Boris Kozinsky
Harvard University
-
-
Efficient ensemble averaging methods to study electronic structure at finite temperature from first principles calculations using neural network
ORAL
–
Presenters
-
Niraj Aryal
Brookhaven National Laboratory
Authors
-
Niraj Aryal
Brookhaven National Laboratory
-
Sheng Zhang
University of Virginia
-
Gia-Wei Chern
University of Virginia
-
-
Predicting electron dynamics in proton-irradiated small molecules by recurrent neural networks
ORAL
–
Presenters
-
Ethan P Shapera
Graz University of Technology
Authors
-
Ethan P Shapera
Graz University of Technology
-
Cheng-Wei Lee
Colorado School of Mines
-
-
Efficient mapping of CO<sub>2</sub>RR intermediates adsorption energies on Cu<sub>1-x</sub>M<sub>x</sub> bimetallic alloys via Machine Learning
ORAL
–
Publication: Efficient mapping of CO adsorption on Cu1-xMx bimetallic alloys via Machine Learning (planned paper)
Presenters
-
Mattia Salomone
DISAT (Politecnico of Turin)
Authors
-
Mattia Salomone
DISAT (Politecnico of Turin)
-
Francesca Risplendi
DISAT (Politecnico of Turin)
-
Michele Re Fiorentin
DISAT (Politecnico of Turin)
-
Federico Raffone
DISAT (Politecnico of Turin)
-
Alejandro Cañete Arché
Trinity College Dublin, The University of Dublin
-
Timo Sommer
Trinity College Dublin, The University of Dublin
-
Max García-Melchor
Trinity College Dublin, The University of Dublin
-
Giancarlo Cicero
DISAT (Politecnico of Turin)
-
-
Machine Learning with Semi-Empirical Quantum Mechanical Methods for Band Gap Prediction
ORAL
–
Presenters
-
Omololu Akin-Ojo
University of Ibadan
Authors
-
Omololu Akin-Ojo
University of Ibadan
-
Ezekiel Oyeniyi
University of Ibadan
-
Adeolu O Ayoola
University of Ibadan
-
Damilare Babatunde
University of Ibadan
-