V: Spin Qubits, Quantum Sensing, and Quantum Networking

ORAL · EE02 · ID: 2155110






Presentations

  • Nanoscale Electrical Tuning of Charged Excitons in Two-Dimensional Materials with 1-nm Gate

    ORAL

    Presenters

    • Jawaher Almutlaq

      Massachusetts Institute of Technology

    Authors

    • Jawaher Almutlaq

      Massachusetts Institute of Technology

    • Jiangtao Wang

      Massachusetts Institute of Technology

    • Linsen Li

      Massachusetts Institute of Technology MIT

    • Chao Li

      Massachusetts Institute of Technology

    • Tong Dang

      Massachusetts Institute of Technology

    • Vladimir Bulović

      MIT, Massachusetts Institute of Technology

    • Jing Kong

      Massachusetts Institute of Technology, Massachusetts institute of technology

    • Dirk Englund

      MIT, Massachusetts Institute of Technology

    View abstract →

  • Defining Mach's Principle in a Topological World

    ORAL

    Publication: ​​​​​​​https://www.researchgate.net/publication/368894770_Spin_Dimensionality_and_Topology_in_the_Fano_Plane#fullTextFileContent

    Presenters

    • Peter Cameron

      Michigan/MIT/Brookhaven (retired)

    Authors

    • Peter Cameron

      Michigan/MIT/Brookhaven (retired)

    • Michael Cook

      independent researcher

    View abstract →

  • Magnetic relaxometry study of cytochrome C using nitrogen vacancy centers in diamond

    ORAL

    Presenters

    • Suvechhya Lamichhane

      University of Nebraska-Lincoln

    Authors

    • Abdelghani Laraoui

      University of Nebraska-Lincoln, University of Nebraska - Lincoln

    • Suvechhya Lamichhane

      University of Nebraska-Lincoln

    • Rupak Timalsina

      University of Nebraska - Lincoln

    • Cody Schultz

      University of Nebraska-Lincoln

    • Ilja Fescenko

      University of Latvia

    • Kapildeb Ambal

      Wichita State University

    • Sy-Hwang Liou

      University of Nebraska-Lincoln

    • Rebecca Y Lai

      University of Nebraska-Lincoln

    View abstract →

  • An optimization framework for deterministic generation of photonic graph states

    ORAL

    Publication: planned papers:
    1) An optimization framework for deterministic generation of photonic graph states
    2) GraphiQ – Designing quantum circuits for generating photonic graph states

    Presenters

    • Sobhan Ghanbari

      University of Toronto

    Authors

    • Sobhan Ghanbari

      University of Toronto

    • Jie Lin

      Quantum Bridge

    • Benjamin MacLellan

      University of Waterloo

    • Luc Robichaud

      Quantum Bridge

    • Piotr Roztocki

      Ki3 Photonics Technologies

    • Hoi-Kwong Lo

      Univ of Toronto and Quantum Bridge, University of Toronto

    View abstract →

  • Optimal non-local Franson bi-photon quantum interferometry via high-finesse cavities in quantum communications

    ORAL

    Publication: 1. Y. J. Lu, R. L. Campbell, and Z. Y. Ou, "Mode-locked two-photon states," Phys. Rev. Lett. 91, 163602 (2003).
    2. Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, "Harnessing high-dimensional hyperentanglement through a biphoton frequency comb," Nat. Photonics 9, 536–542 (2015).
    3. K.-C. Chang, X. Cheng, M. C. Sarihan, A. K. Vinoid, Y. S. Lee, T. Zhong, Y.-X. Gong, Z. Xie, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, "648 Hilbert space dimensionality in a biphoton frequency comb: entanglement of formation and Schmidt mode decomposition,"
    npj Quantum Inf. 7, 48 (2021).
    4. K.-C. Chang, X. Cheng, M. C. Sarihan, F. N. C. Wong, J. H. Shapiro, and C. W. Wong, "High-dimensional energy-time entanglement distribution via a biphoton frequency comb," in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of
    America, 2021), paper FF1A.7.
    5. K.-C. Chang, X. Cheng, M. C. Sarihan, W. Wang, F. N. C. Wong, J. H. Shapiro, and C. W. Wong, "Mode-locked phase coherent singly-resonant biphoton frequency comb," in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of
    America, 2022), paper FTh5O.4.70.
    6. J. H. Shapiro, "Coincidence dips and revivals from a Type-II optical parametric amplifier," in Conference on Nonlinear Optics (Optical Society of America, 2002), paper FC7-1.
    7. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Time-bin-modulated biphotons from cavity-enhanced down-conversion," Phys. Rev. Lett. 97, 223601 (2006).
    8. M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, "Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold," Appl. Phys. Lett. 91, 191104 (2007).
    9. M. Scholz, L. Koch, and O. Benson, "Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion," Phys. Rev. Lett. 102, 063603 (2009).
    10. F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Ceré, and M. W. Mitchell, "Atom-resonant heralded single photons by interaction-free measurement," Phys. Rev. Lett. 106, 053602 (2011).
    11. D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. De Riedmatten, "Quantum storage of heralded single photons in a praseodymium-doped crystal," Phys. Rev. Lett. 112, 040504 (2014).
    12. A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. De Riedmatten, "Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory," Phys. Rev. X 7, 021028 (2017).
    13. A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, "Quantum storage of frequency multiplexed heralded single photons," Phys. Rev. Lett. 123, 080502 (2019).
    14. R. Ikuta, R. Tani, M. Ishizaki, S. Miki, M. Yabuno, H. Terai, N. Imoto, and T. Yamamoto, "Frequency-multiplexed photon pairs over 1000 modes from a quadratic nonlinear optical waveguide resonator with a singly resonant configuration," Phys. Rev. Lett. 123, 193603
    (2019).
    15. D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, "Telecom-heralded entanglement between multimode solid-state quantum memories," Nature 594, 37–40 (2021).
    16. T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, "Massive-mode polarization entangled biphoton frequency comb," Sci. Rep. 12, 8964 (2022).
    17. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science 351,
    1176–1180 (2016).
    18. J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M.
    Weiner, "Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb," Optica 4, 655–663 (2017).
    19. M. Kues, C. Reimer, P. Roztocki, L. Romero Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, "On-chip generation of high-dimensional entangled quantum states and their coherent control,"
    Nature 546, 622–626 (2017).
    20. H.-H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and P. Lougovski, "Quantum interference and correlation control of frequency-bin qubits," Optica 5, 1455 (2018).
    21. P. Imany, N. B. Lingaraju, M. S. Alshaykh, D. E. Leaird, and A. M. Weiner, "Probing quantum walks through coherent control of high-dimensionally entangled photons," Sci. Adv. 6, eaba8066 (2020).
    22. R. H. Brown and R. Q. Twiss, "A test of a new type of stellar interferometer on Sirius,"; Nature 178, 1046–1048 (1956).
    23. N. B. Lingaraju, H.-H. Lu, S. Seshadri, P. Imany, D. E. Leaird, J. M. Lukens, and A. M. Weiner, "Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence," Opt. Express 27, 38683–38697 (2019).
    24. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløøwe, J. L. O'Brien, A. Laing, and M. G. Thompson, "Multidimensional quantum entanglement with large-scale integrated optics," Science 360, 285–291 (2018).
    25. C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. R. Cortés, Y. Zhang, B. Fischer, S. Loranger, R. Kashyap, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, W. J. Munro, J. Azaña, M. Kues, and R. Morandotti, "High-dimensional one-way quantum processing implemented on d-level cluster states," Nat. Phys. 15, 148–153 (2018).
    26. D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R. Santagati, Y.-J. Qian, Y. Li, Y.-F. Xiao, M. Huber, M. Malik, G. F. Sinclair, X. Zhou, K. Rottwitt, J. L. O'Brien, J. G. Rarity, Q. Gong, L. K. Oxenlowe, J. Wang, and M. G. Thompson, "Chip-to-chip quantum teleportation and multi-photon entanglement in silicon," Nat. Phys. 16, 148–153 (2020).
    27. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, "Integrated photonic quantum
    technologies," Nat. Photonics 14, 273–284 (2020).
    28. I. Ali Khan, C. J. Broadbent, and J. C. Howell, "Large-alphabet quantum key distribution using energy-time entangled bipartite states," Phys. Rev. Lett. 98, 060503 (2007).
    29. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding," New J. Phys. 17, 022002
    (2015).
    30. N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, "Provably secure and high-rate quantum key distribution with time-bin qudits," Sci. Adv. 3, e1701491 (2017).
    31. C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, "Large-alphabet encoding for higher-rate quantum key distribution," Opt. Express 27, 17539–17549 (2019).
    32. I. Vagniluca, B. Da Lio, D. Rusca, D. Cozzolino, Y. Ding, H. Zbinden, A. Zavatta, L. K. Oxenløwe, and D. Bacco, "Efficient time-bin encoding for practical high-dimensional quantum key distribution," Phys. Rev. Appl. 14, 014051 (2020).
    33. V. Tamma and S. Laibacher, "Multiboson correlation interferometry with arbitrary single-photon pure states," Phys. Rev. Lett. 114, 243601 (2015).
    34. X.-J. Wang, B. Jing, P.-F. Sun, C.-W. Yang, Y. Yu, V. Tamma, X.-H. Bao, and J.-W. Pan, "Experimental time-resolved interference with multiple photons of different colors," Phys. Rev. Lett. 121, 080501 (2018).
    35. S. Laibacher and V. Tamma, "From the physics to the computational complexity of multiboson correlation interference," Phys. Rev. Lett. 115, 243605 (2015).
    36. A. P. Lund, M. J. Bremner, and T. C. Ralph, "Quantum sampling problems, BosonSampling and quantum supremacy," npj Quantum Inf. 3, 15 (2017).
    37. J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205–2208 (1989).
    38. F. Vedovato, C. Agnesi, M. Tomasin, M. Avesani, J.-Å. Larsson, G. Vallone, and P. Villoresi, "Postselection-loophole-free Bell violation with genuine time-bin entanglement," Phys. Rev. Lett. 121, 190401 (2018).
    39. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
    40. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957–13964 (2007).
    41. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Efficient entanglement distribution over 200 kilometers," Opt. Express 17, 11440–11449 (2009).
    42. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, "Entanglement distribution over 300 km of fiber," Opt. Express 21, 23241–23249 (2013).
    43. D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, "Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography," Laser Photon. Rev. 10, 451–457 (2016).
    44. K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, "Two-photon comb with wavelength conversion and 20-km distribution for quantum communication," Commun. Phys. 3, 138 (2020).
    45. Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, "Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry," Phys. Rev. Lett. 112, 120506 (2014).
    46. F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, "Secure quantum key distribution with realistic devices," Rev. Mod. Phys. 92, 025002 (2020).
    47. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, "Quantum repeaters based on atomic ensembles and linear optics," Rev. Mod. Phys. 83, 33–80 (2011).
    48. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussiéres, M. George, R. Ricken, W. Sohler, and W. Tittel, "Broadband waveguide quantum memory for entangled photons," Nature 469, 512–515 (2011).
    49. C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, "Quantum storage of photonic entanglement in a crystal," Nature 469, 508–511 (2011).
    50. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, "Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre," Nat. Photonics 9, 83–87 (2015).
    51. E. Saglamyurek, M. G. Puigibert, Q. Zhou, L. Giner, F. Marsili, V. B. Verma, S. W. Nam, L. Oesterling, D. Nippa, D. Oblak, and W. Tittel, "A multiplexed light-matter interface for fibre-based quantum networks," Nat. Commun. 7, 11202 (2016).
    52. A. Tiranov, P. C. Strassmann, J. Lavoie, N. Brunner, M. Huber, V. B. Verma, S. W. Nam, R. P. Mirin, A. E. Lita, F. Marsili, M. Afzelius, F. Bussières, and N. Gisin, "Temporal multimode storage of entangled photon pairs," Phys. Rev. Lett. 117, 240506 (2016).
    53. F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, and R. Ursin, "Distribution of high-dimensional entanglement via an intra-city free-space link," Nat. Commun. 8, 15971 (2017).
    54. T. Ikuta and H. Takesue, "Four-dimensional entanglement distribution over 100 km," Sci. Rep. 8, 7 (2018).
    55. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, "High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide," Opt. Express 17, 12019–12030 (2009).
    56. B. A. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E.
    Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, "Demonstration of sub-3 ps temporal resolution with a superconducting nanowire
    single-photon detector," Nat. Photonics 14, 250–255 (2020).
    57. J. G. Rarity and P. R. Tapster, "Experimental violation of Bell's inequality based on phase and momentum," Phys. Rev. Lett. 64, 2495–2498 (1990).
    58. Z. Y. Ou and Y. J. Lu, "Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons," Phys. Rev. Lett. 83, 2556–2559 (1999).
    59. C. E. Kuklewicz, E. Keskiner, F. N. C. Wong, and J. H. Shapiro, "A high-flux entanglement source based on a doubly resonant optical parametric amplifier," J. Opt. B Quantum Semiclass. Opt. 4, S162 (2002).
    60. A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, "Telecom-heralded single-photon absorption by a single atom," Phys. Rev. A 92, 063827 (2015).
    61. O. Slattery, L. Ma, P. Kuo, and X. Tang, "Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity," Appl. Phys. B 121, 413–419 (2015).
    62. M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, "Sub-megahertz linewidth single photon source," APL Photon. 1, 096101 (2016).
    63. O. T. Slattery, L. Ma, K. Zong, and X. Tang, "Background and review of cavity-enhanced spontaneous parametric down-conversion," J. Res. Natl. Inst. Stan. Technol. 124, 124019 (2019).
    64. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, "Waveguide-based OPO source of entangled photon pairs," New J. Phys. 11, 113042 (2009).
    65. C.-S. Chuu, G. Y. Yin, and S. E. Harris, "A miniature ultrabright source of temporally long, narrowband biphotons," Appl. Phys. Lett. 101, 051108 (2012).
    66. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, "Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks," Phys. Rev. Lett. 110, 220502 (2013).
    67. A. Ahlrichs and O. Benson, "Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect," Appl. Phys. Lett. 108, 021111 (2016).
    68. P.-J. Tsai and Y.-C. Chen, "Ultrabright, narrow-band photon-pair source for atomic quantum memories," Quantum Sci. Technol. 3, 034005 (2018).
    69. A. Martin, T. Guerreiro, A. Tiranov, S. Designolle, F. Fröwis, N. Brunner, M. Huber, and N. Gisin, "Quantifying photonic high dimensional entanglement," Phys. Rev. Lett. 118, 110501 (2017).

    Presenters

    • Sophi C Song

      University of California, Los Angeles

    Authors

    • Sophi C Song

      University of California, Los Angeles

    • Kai-Chi Chang

      University of California, Los Angeles

    • Xiang Cheng

      University of California Los Angeles, University of California, Los Angeles

    • Murat Can Sarihan

      University of California, Los Angeles

    • Chee Wei Wong

      University of California, Los Angeles

    View abstract →

  • Highly-efficient multimode superconducting integrated quantum memory

    ORAL

    Publication: Matanin, Aleksei R., et al. "Toward Highly Efficient Multimode Superconducting Quantum Memory." Physical Review Applied 19.3 (2023): 034011.

    Presenters

    • Aleksei R Matanin

      FMN Laboratory, Bauman Moscow State Technical University

    Authors

    • Aleksei R Matanin

      FMN Laboratory, Bauman Moscow State Technical University

    • Konstantin I Gerasimov

      Kazan Quantum Center, Kazan National Research Technical University

    • Eugene S Moiseev

      Kazan Quantum Center, Kazan National Research Technical University

    • Nikita S Smirnov

      FMN Laboratory, Bauman Moscow State Technical University

    • Anton Ivanov

      Bauman Moscow State Technical University, FMN Laboratory, Bauman Moscow State Technical University

    • Elizaveta I Malevannaya

      FMN Laboratory, Bauman Moscow State Technical University

    • Victor I Polozov

      FMN Laboratory, Bauman Moscow State Technical University

    • Evgeny V Zikiy

      FMN Laboratory, Bauman Moscow State Technical University

    • Sergey A Moiseev

      Kazan Quantum Center, Kazan National Research Technical University

    • Ilya A Rodionov

      Bauman Moscow State Technical University, FMN Laboratory, Bauman Moscow State Technical University

    View abstract →