Data science, AI and ML for Active and Living Systems
FOCUS · F18 · ID: 2155850
Presentations
-
Controlling Colloidal Assembly & Reconfiguration
ORAL · Invited
–
Presenters
-
Michael A Bevan
Johns Hopkins University
Authors
-
Michael A Bevan
Johns Hopkins University
-
-
Quantifying dynamics of soft and active matter with microscopy and machine learning
ORAL
–
Presenters
-
Gildardo Martinez
University of San Diego
Authors
-
Gildardo Martinez
University of San Diego
-
Justin Siu
University of San Diego
-
Dylan Gage
University of San Diego
-
Emma Kao
University of San Diego
-
Juan Carlos Avila
University of San Diego
-
Ruilin You
University of San Diego
-
Ryan J McGorty
University of San Deigo, University of San Diego
-
-
Learning active nematohydrodynamics with SINDy-PI
ORAL
–
Presenters
-
Chris Amey
Brandeis University
Authors
-
Chris Amey
Brandeis University
-
Michael F Hagan
Brandeis University
-
Aparna Baskaran
Brandeis University
-
-
Grant Rotskoff
ORAL · Invited
–
Publication: arXiv:2306.10778, arxiv:2205.01205
Presenters
-
Grant M Rotskoff
Stanford University, Stanford Univ
Authors
-
Grant M Rotskoff
Stanford University, Stanford Univ
-
-
Learning cell division strategies across diverse organisms
ORAL
–
Presenters
-
Shijie Zhang
Massachusetts Institute of Technology
Authors
-
Shijie Zhang
Massachusetts Institute of Technology
-
Chenyi Fei
Massachusetts Institute of Technology
-
Jorn Dunkel
Massachusetts Institute of Technology
-
-
A Spectral Approach for Learning Spatiotemporal Neural Differential Equations
ORAL
–
Publication: https://arxiv.org/pdf/2309.16131.pdf
Presenters
-
Mingtao Xia
New York University
Authors
-
Mingtao Xia
New York University
-
Xiangting Li
University of California, Los Angeles
-
Qijing Shen
Oxford University
-
Tom Chou
University of California, Los Angeles
-
-
Controlling Assembly and Encoding in Active Matter Using Light Patterns
ORAL
–
Presenters
-
Jerome Delhommelle
University of Massachusetts, Lowell
Authors
-
Jerome Delhommelle
University of Massachusetts, Lowell
-
Caroline Desgranges
University of Massachusetts Lowell
-
-
Improved KCNQ2 gene missense variant interpretation with artificial intelligence.
ORAL
–
Publication: Improved KCNQ2 gene missense variant interpretation with artificial intelligence
Alba Saez-Matia, Arantza Muguruza-Montero, Sara M-Alicante, Eider Núñez, Rafael Ramis, Óscar R. Ballesteros, Markel G Ibarluzea, Carmen Fons, View ORCID ProfileAritz Leonardo, Aitor Bergara, Alvaro Villarroel
https://doi.org/10.1101/2022.10.20.513007Presenters
-
Aritz Leonardo
University of the Basque Country UPV/EHU
Authors
-
Aritz Leonardo
University of the Basque Country UPV/EHU
-
Aitor Bergara
Donostia International Physics Center
-
Alvaro Villarroel
Biofisika institute
-
Markel García Ibarluzea
Donostia International Physcis Center
-
Rafael Ramis Cortés
Donostia International Physcis Center
-
Alba Sáez-Matía
biofisika
-
Eider Núñez
Biofisika institute
-
-
Uncovering interpretable low-dimensional geometric structures in gene expression using curvature regularized variational autoencoders
ORAL
–
Presenters
-
Jason Z Kim
Cornell University
Authors
-
Jason Z Kim
Cornell University
-
Nicolas Perrin-Gilbert
Curie Institute
-
Paul Klein
Curie Institute
-
Erkan Narmanli
Curie Institute
-
Chris Myers
Cornell University
-
Itai Cohen
Cornell University
-
Joshua J Waterfall
Curie Institute
-
James P Sethna
Cornell University
-
-
Convolutional Neural Network Analysis of Molecular Docking for Cancer Drug Discovery
ORAL
–
Presenters
-
Gaige Riggs
Missouri State University
Authors
-
Gaige Riggs
Missouri State University
-
Ridwan Sakidja
Missouri State University
-
-
Combining Neural Networks and Principal Component Analysis
ORAL
–
Publication: D. Yevick, K. Suszek, in preparation (Arxiv)
Presenters
-
Karolina Suszek
University of Waterloo
Authors
-
David O Yevick
University of Waterloo
-
Karolina Suszek
University of Waterloo
-