Predictive Scale-Bridging Simulations through Active LearningTimothy C. Germann, Los Alamos National Laboratory
ORAL · Invited
Abstract
* This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (LANL) under Project Number 20190005DR.
–
Publication: 1) N. Lubbers, A. Agarwal, Y. Chen, S. Son, M. Mehana, Q. Kang, S. Karra, C. Junghans, T. C. Germann, and H. S. Viswanathan, Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media, Scientific Reports 10 (1), 1-13 (2020).
2) A. Diaw, K. Barros, J. Haack, C. Junghans, B. Keenan, Y. W. Li, D. Livescu, N. Lubbers, M. McKerns, R. S. Pavel, D. Rosenberger, I. Sagert, and T. C. Germann, Multiscale simulation of plasma flows using active learning, Phys. Rev. E 102, 023310 (2020).
3) R. S. Pavel, J. E. Santos, A. Pachalieva, A. Diaw, N. Lubbers, M. Mehana, J. R. Haack, H. S. Viswanathan, D. Livescu, T. Germann, and C. Junghans, GLUE Code: A framework handling communication and interfaces between scales, J. Open Source Software 7, 4822 (2022).
4) S. Karra, M. Mehana, N. Lubbers, Y. Chen, Q. Kang, R. S. Pavel, J. E. Santos, C. Junghans, A. Pachalieva, M. McKerns, J. R. Haack, D. Livescu, A. Diaw, T. C. Germann, and H. S. Viswanathan, Predictive Scale-Bridging Simulations through Active Learning, Scientific Reports 13, 16262 (2023).
Presenters
-
Timothy C Germann
Los Alamos Natl Lab
Authors
-
Timothy C Germann
Los Alamos Natl Lab