Magic-angle helical trilayer graphene.
ORAL · Invited
Abstract
The moiré patterns generated by twisting van der Waals materials has given rise to a new regime of physics in which electronic interactions and quantum geometry are at the
forefront. The unprecedented degree of tunability in these devices has led to the experimental realization of a remarkably diverse set of physical phenomena. While the
majority of studies have focused on two-layer materials, going to three or more layers vastly increases the space of possibilities, which is just beginning to be explored.
I will discuss magic-angle helical trilayer graphene (HTG), a deceptively simple structure consisting of three graphene layers with identical twist angles relative to one another. I will show how lattice relaxation, topological flat bands, and strong interactions come together to make HTG a uniquely rich platform for realizing strongly correlated topological states and for exploring their phase transitions.
forefront. The unprecedented degree of tunability in these devices has led to the experimental realization of a remarkably diverse set of physical phenomena. While the
majority of studies have focused on two-layer materials, going to three or more layers vastly increases the space of possibilities, which is just beginning to be explored.
I will discuss magic-angle helical trilayer graphene (HTG), a deceptively simple structure consisting of three graphene layers with identical twist angles relative to one another. I will show how lattice relaxation, topological flat bands, and strong interactions come together to make HTG a uniquely rich platform for realizing strongly correlated topological states and for exploring their phase transitions.
–
Publication: Science Advances 9 (36), eadi6063 (2023).
Presenters
-
Trithep Devakul
Stanford University
Authors
-
Trithep Devakul
Stanford University