Electrons, Phonons, Electron-Phonon Scattering, and Phononics V
FOCUS · K58 · ID: 2155700
Presentations
-
Abstract Withdrawn
ORAL · Invited · Withdrawn
–
-
Impact of phonons on the phase stability of FCC alloys
ORAL
–
Presenters
-
Chenhui Hu
City University of Hong Kong
Authors
-
Chenhui Hu
City University of Hong Kong
-
Lingrui Fan
City University of Hong Kong
-
Xun-Li Wang
City University of Hong Kong, City Univ of Hong Kong
-
-
Observation of phonon softening in CrCoNi medium entropy alloy
ORAL
–
Presenters
-
Lingrui Fan
City University of Hong Kong
Authors
-
Lingrui Fan
City University of Hong Kong
-
Chenhui Hu
City University of Hong Kong
-
Xun-Li Wang
City University of Hong Kong, City Univ of Hong Kong
-
-
Strain dependence of phonons in α-uranium
ORAL
–
Presenters
-
Mark A Mathis
Columbia University
Authors
-
Mark A Mathis
Columbia University
-
Chris A Marianetti
Columbia University
-
-
Peltier effect of phonons driven by electromagnetic waves
ORAL
–
Publication: H. Ishizuka and M. Sato, arXiv:2310.03271 (2023).
Presenters
-
Hiroaki Ishizuka
Tokyo Institute of Technology, Tokyo
Authors
-
Hiroaki Ishizuka
Tokyo Institute of Technology, Tokyo
-
-
Photoactivated Ligand Exchange Dynamics in Tungsten-Complexes: A TDESMD Approach
ORAL
–
Presenters
-
Dmitri Kilin
North Dakota State University
Authors
-
Dmitri Kilin
North Dakota State University
-
KAMRUN NAHAR KEYA
Iowa State University
-
Yulun Han
North Dakota State University
-
Wenfang Sun
University of Alabama, Tuscaloosa, University of Alabama
-
Wenjie Xia
Iowa State University
-
Bakhtiyor Rasulev
North Dakota State University
-
Svetlana Kilina
North Dakota State University
-
-
Machine Learning-Driven Predictions of Crystal Symmetry Groups Using Chemical Compositions in Binary and Ternary Materials
ORAL
–
Publication: [1] Alghofaili, Yousef A., et al. "Accelerating Materials Discovery through Machine Learning: Predicting
Crystallographic Symmetry Groups." The Journal of Physical Chemistry C 127.33 (2023): 16645-16653.
[2] Alsaui, Abdulmohsen, et al. "Highly accurate machine learning prediction of crystal point groups for
ternary materials from chemical formula." Scientific Reports 12.1 (2022): 1577.
[3] Alsaui, Abdulmohsen A., et al. "Resampling techniques for materials informatics: limitations in crystal
point groups classification." Journal of Chemical Information and Modeling 62.15 (2022): 3514-3523.
[4] Baloch, Ahmer AB, et al. "Extending Shannon's ionic radii database using machine learning." Physical
Review Materials 5.4 (2021): 043804.Presenters
-
Mohammed Alghadeer
University of California, Berkeley, University of Oxford
Authors
-
Mohammed Alghadeer
University of California, Berkeley, University of Oxford
-
Yousef A Alghofaili
Xpedite Information Technology
-
Abdulmohsen A Alsaui
King Fahd Univ KFUPM
-
Saad M Alqahtani
Jubail Industrial College
-
Fahhad H Alharbi
King Fahd Univ KFUPM, Department of Electrical Engineering, King Fahd University of Petroleum and Minerals
-
-
Density functional latent space representations of dynamical densities and potentials
ORAL
–
Presenters
-
Susan R Atlas
University of New Mexico
Authors
-
Susan R Atlas
University of New Mexico
-