Robust Interlayer-Coherent Quantum Hall States in Twisted Bilayer Graphene
ORAL
Abstract
* Basic Science Research Program NRF-2020R1C1C1006914 through the National Research Foundation of Korea (NRF)DGIST R&D program (22-CoE-NT-01) of the Korean Ministry of Science and ICTBrainLink program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(2022H1D3A3A01077468)JSPS KAKENHI (Grant Numbers 19H05790, 20H00354 and 21H05233) and A3 Foresight by JSPSNRF of Korea (Grant No. 2020R1C1C1006048) funded by the Korean Government (MSIT)Air Force Office of Scientific Research under Award No. FA2386-20-1-4029 and No. FA2386-22-1-4061acknowledges Samsung Science and Technology Foundation under Project Number SSTF-BA2002-05. B.K.KIAS individual Grant PG069402 at Korea Institute for Advanced Study, and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1075569).MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2022-RS-2022-00164799)
–
Publication: 1. Sato, M. & Ando, Y. Topological superconductors: A review. Rep. Prog. Phys. 80 076501 (2017).
2. Haldane, F. D. M. Model for quantum Hall effect without Landau levels: Condensed-matter realization of the "Parity anomaly". Phys. Rev. Lett. 61 2015-2018 (1988).
3. Chang, C. -Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340 167-170 (2013).
4. Chang, C. -Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mat. 14 473-477 (2015).
5. Deng, Y., Yu, Y., Shi, M. Z., Guo, Z., Xu, Z., Wang, J., Chen, X. H. & Zhang, Y. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367 895-900 (2020).
6. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641-646 (2021).
7. Spanton, E. M., Zibrov, A. A., Zhou, H., Taniguchi, T., Watanabe, K., Zaletel, M. P. & Young, A. F. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360 62-66 (2018).
8. Xie, Y., Pierce, A. T., Park, J. M., Parker, D. E., Khalaf, E., Ledwith, P., Cao, Y., Lee, S. H., Chen, S., Forrester, P. R., Watanabe, K., Taniguchi, T., Vishwanath, A., Jarillo-Herrero, P. & Yacoby, A. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600 439-443 (2021).
9. Cao, Y., Fatami, V., Demir, A., Fang, S., Tomarken, S. L., Luo, J. Y., Sanchez-Yamagish, J. D., Watanabe, K., Taniguchi, T., Kaxiras, E., Ashoori, R. C. & Jarillo-Herrero, P. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556 80-84 (2018).
10. Lu, X., Stepanov, P., Yang, W., Xie, M., Aamir, M. A., Das, I., Urgell, C., Watanabe, K., Taniguchi, T., Zhang, G., Bachtold, A., Macdonald, A. H. & Efetov. D. K. Superconductors, orbital magnets, and correlated states in magic angle bilayer graphene. Nature 574, 653-657 (2019).
11. Lee, J. Y., Khalaf, E., Liu, S., Liu, X., Hao, Z., Kim, P. & Vishwanath, A. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nat. Commun 10 5333 (2019).
12. Liu, X., Hao, Z., Khalaf, E., Lee, J. Y., Ronen, Y., Yoo, H., Najafabadi, D. H., Watanabe, K., Taniguchi, T., Vishwanath, A. & Kim, P. Tunable spin-polarized correlated states in twisted double bilayer graphene Nature 583, 221-225 (2020).
13. Xie, M. & Macdonald, A. H. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124 097601 (2020).
14. Nuckolls, K. P., Oh, M., Wong, D., Lian, B., Watanabe, K., Taniguchi, T., Bernevig, B. A. & Yazdani, A. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588 610-615 (2020).
15. Xu, Y., Liu, S., Rhodes, D. A., Watanabe, K., Taniguchi, T., Hone, J., Elser, V., Mak, K. F. & Shan, J. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587 214-218 (2020).
16. Chen, G., Sharpe, A. L., Fox, E. J., Zhang, Y.-H., Wang, S., Jiang, L., Lyu, B., Li, H., Watanabe, K., Taniguchi., T., Shi, Z., Senthil, T., Goldhaber-Gordon, D., Zhang, Y. & Wang, F. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579 56-61 (2020).
17. Huang, X., Wang, T., Miao, S., Wang, C., Li, Z., Lian, Z., Taniguchi, T., Watanabe, K., Okamoto, S., Xiao, D., Shi, S.-F. & Cui, Y.-T. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17 715-719 (2021).
18. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45 494-497 (1980).
19. Willet, R., Einsenstein, J. P., Störmer, H. L., Tsui, D. C., Gossard, A. C. & English, J. H. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59 1776-1779 (1987).
20. Falson, J., Maryenko, D., Friess, B., Zhang, D., Kozuka, Y., Tsukazaki, A., Smet, J. H. & Kawasaki, M. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11 347-351 (2015).
21. Falson, J., Tabrea, D., Zhang, D., Sodemann, I., Kozuka, Y., Tsukazaki, A., Kawasaki, M., von Klitzing, K. & Smet. J. H. A cascade of phase transitions in an orbitally mixed half-filled Landau level. Sci. Adv. 4, eaat8742 (2018).
22. Falson, J. Sodemann, I., Skinner, B., Tabrea, D., Kozuka, Y., Tsukazaki, A., Kawasaki, M., von Klitzing, K. & Smet, J. H. Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions. Nat. Mater. 21 311-316 (2022).
23. Ki, D.-K., Fal'ko, V. I., Abanin, D. A. & Morpurgo, A. F. Observation of even denominator fractional quantum Hall effect in suspended bilayer graphene. Nano. Lett. 14, 2135-2139 (2014).
24. Zibrov, A. A., Kometter, C., Zhou, H., Spanton, E. M., Taniguchi, T., Watanabe, K., Zaletel, M. P. & Young, A. F. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549 360-364 (2017).
25. Li, J. I. A., Tan, C., Chen, S., Zeng, Y., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Even-denominator fractional quantum Hall states in bilayer graphene. Science 358 648-652 (2017).
26. Zibrov, A. A., Spanton, E. M., Zhou, H., Kometter, C., Taniguchi, T., Watanabe, K. & Young, A. F. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nat. Phys 14 930-935 (2018).
27. Kim, Y., Balram, A. C., Taniguchi, T., Watanabe, K., Jain, J. K. & Smet, J. H. Even denominator fractional quantum Hall states in higher Landau levels of graphene. Nat. Phys. 15 154-158 (2019).
28. Polshyn, H., Zhou, H., Spanton, E. M., Taniguchi, T., Watanabe, K. & Young, A. F. Quantitative transport measurements of fractional quantum Hall energy gaps in edgeless graphene devices. Phys. Rev. Lett. 121 226801 (2018).
29. Chen, S., Ribeiro-Palau, R., Yang, K., Watanabe, K., Taniguchi, T., Hone, J. & Dean, C. R. Competing fractional quantum Hall and electron solid phases in graphene. Phys. Rev. Lett. 122 026802 (2019).
30. Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W. & He, S. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68 1383–1386 (1992).
31. Wiersma, R. D., Lok, J. G. S., Kraus, S., Dietsche, W., von Klitzing, K., Schuh, D., Bichler, M., Tranitz, H. -P. & Wegscheider, W. Activated transport in the separate layers that form the νT=1 exciton condensate. Phys. Rev. Lett. 93 266805 (2004).
32. Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93 036801 (2004).
33. Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: Evidence for electron-hole pairing. Phys. Rev. Lett. 93 036802 (2004).
34. Eisenstein, J. P. & Macdonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432 691–694 (2004).
35. Zhang, D., Falson, Schmult, S., Dietsche, W. & Smet, J. H. Quasiparticle Tunneling across an exciton condensate. Phys. Rev. Lett. 124 246801 (2020).
36. Zhang, D., Dietsche, W. & von Klitzing, K. Anomalous interlayer transport of quantum Hall bilayers in the strongly Josephson-coupled regime. Phys. Rev. Lett. 116 186801 (2016).
37. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13 746-750 (2017).
38. Li, J. I. A., Taniguchi, T., Watanabe, K. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13 751-755 (2017).
39. Liu, X., Hao, Z., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Interlayer fractional quantum Hall effect in a coupled graphene double layer. Nat. Phys. 15 893-897 (2019).
40. Li, J. I. A., Shi, Q., Zeng, Y., Watanabe, K., Taniguchi, T., Hone, J. & Dean, C. R. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898-903 (2019).
41. Kim, Y., Yun, H., Nam, S.-G., Son, M., Lee, D. S., Kim, D. C., Seo, S., Choi, H. C., Lee, H.-J., Lee, S. W. & Kim, J. S. Breakdown of the interlayer coherence in twisted bilayer graphene. Phys. Rev. Lett. 110 096602 (2013).
42. Kim, K., Yankowitz, M., Fallahazad, B., Kang, S., Movva, H. C. P., Huang, S., Larentis, S., Corbet, C. H., Taniguchi, T., Watanabe, K., Banerjee, S., LeRoy, B. J. & Tutuc, E. van der Waals heterostructures with high accuracy rotational alignment. Nano. Lett. 16 1989-1995 (2016).
43. Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10 451-456 (2014).
44. Kim, K., Coh, S., Tan, L. Z., Regan, W., Yuk, J. M., Chatterjee, E., Crommie, M. F., Cohen, M. L., Louie, S. G. & Zettl, A. Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure. Phys. Rev. Lett. 108 246103 (2012).
45. Kim, Y., Moon, P., Watanabe, K., Taniguchi, T. & Smet, J. H. Odd integer quantum Hall states with interlayer coherence in twisted bilayer graphene. Nano. Lett. 21 4249-4254 (2021).
46. Kim, Y., Herlinger, P., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K. & Smet, J. H. Charge inversion and topological phase transition at a twist angle induced van Hove singularity of bilayer graphene. Nano. Lett. 16 5053-5059 (2016).
47. Young, A. F., Dean, C. R., Wang, L., Ren, H., Cadden-Zimansky, P., Watanabe, K., Taniguchi, T., Hone, J., Shepard, K. L. & Kim, P. Spin and valley quantum Hall ferromagnetism in graphene. Nat. Phys. 8 550-556 (2012).
48. Hamilton, A. R., Simmons, M. Y., Bolton, F. M., Patel, N. K., Millard, I. S., Nicholls, J. T., Ritchie, D. A. & Pepper, M. Fractional quantum Hall effect in bilayer two-dimensional hole-gas systems. Phys. Rev. B 54 R5259(R) (1996).
49. Clarke, W. R., Micolich, A. P., Hamilton, A. R., Simmons, M. Y., Hanna, C. B., Rodriguez, J. R., Pepper, M. & Ritchie, D. A. Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance. Phys. Rev. B 71 081304(R) (2005).
50. Zhang, D., Schmult, S., Venkatachalam, V., Dietsche, W., Yacoby, A., von Klitzing, K. & Smet, J. Local compressibility measurement of the tot =1 quantum Hall state in a bilayer electron system. Phys. Rev. B 87, 205304 (2013).
51. Das Sarma, S., Sachdev, S. & Zheng, L. Canted antiferromagnetic and spin-singlet quantum Hall states in double-layer systems. Phys. Rev. B 58, 4672 (1998).
52. Park, K. & Das Sarma, S. Coherent tunnelling in exciton condensates of bilayer quantum Hall systems. Phys. Rev. B 74 035338 (2006).
53. Raoul, D. and Han, J. H., Exciton formation in graphene bilayer, Phys. Rev. B 78, 045401 (2008).
54. Shi, Q., Shih, E.-M., Rhodes, D., Kim, B., Barmak, K., Watanabe, K., Taniguchi, T., Papić, Z., Abanin, D. A., Hone, J. & Dean, C. R. Bilayer WSe2 as a natural platform for interlayer exciton condenstates in the strong coupling limit. Nat. Nano 17, 577-582 (2022).
55. Yang, K., Das Sarma, S. & Macdonald, A. H. Collective modes and skyrmion excitations in graphene SU(4) quantum Hall ferromagnets. Phys. Rev. B 74, 075423 (2006).
Presenters
-
Dohun Kim
Daegu Gyeongbuk Institute of Science and Technology
Authors
-
Dohun Kim
Daegu Gyeongbuk Institute of Science and Technology
-
Byungmin Kang
Massachusetts Institute of Technology
-
Yong-Bin Choi
POSTECH
-
Kenji Watanabe
National Institute for Materials Science, NIMS, Research Center for Electronic and Optical Materials, National Institute for Materials Science, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science
-
Takashi Taniguchi
Kyoto Univ, National Institute for Materials Science, Research Center for Materials Nanoarchitectonics, Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, National Institute for Materials Sciences, NIMS, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, International Center for Materials Nanoarchitectonics, NIMS, Japan, International Center for Materials Nanoarchitectonics, Tsukuba, National Institue for Materials Science, Kyoto University, National Institute of Materials Science, International Center for Materials Nanoarchitectonics and National Institute for Materials Science
-
Gil-Ho Lee
Pohang Univ of Sci & Tech
-
Gil Young Cho
Pohang Univ of Sci & Tech
-
Youngwook Kim
DGIST, Daegu Gyeongbuk Institute for Science and Technology