Neurodynamical Models of Cognition

FOCUS · M28 · ID: 2154336






Presentations

  • Neurodivergent behavior gives insight to neural noise

    ORAL

    Publication: Planned:
    Autism through the lens of the free energy principle: what motion dictates about neurodynamics

    Presenters

    • Nicholas W Parris

      Indiana University - Bloomington

    Authors

    • Nicholas W Parris

      Indiana University - Bloomington

    • Jorge V Jose

      Indiana University Bloomington

    View abstract →

  • Synchronization in the quaternionic Kuramoto model

    ORAL

    Publication: [1] Huygens, C.: Horologium Oscillatorium, (1673)
    [2] Strogatz, S.: Exploring complex networks. Nature 410, 268–276 (2001) https:
    //doi.org/10.1038/35065725
    [3] Strogatz, S.: SYNC: The Emerging Science of Spontaneous Order. Penguin Adult,
    New York, NY (2004)
    [4] Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept
    in Nonlinear Sciences. Cambridge Unviersity Press, New York (2001)
    [5] Osipov, G.V., Kurths, J., Zhou, C.S.: Synchronization in Oscillatory Net-
    works. Springer, Berlin, Heidelberg, Germany (2007). https://doi.org/10.1007/
    978-3-540-71269-5
    [6] Strogatz, S.: From kuramoto to crawford: exploring the onset of synchronization
    in populations of coupled oscillators. Physica D: Nonlinear Phenomena 143, 1–20
    (2000) https://doi.org/10.1016/S0167-2789(00)00094-4
    [7] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchro-
    nization of chaotic systems. Physics Reports 366, 1–101 (2002) https://doi.org/
    10.1016/S0370-1573(02)00137-0
    [8] Winfree, A.T.: Biological rhythms and the behavior of populations of coupled
    oscillators. Journal of Theoretical Biology 16, 15–42 (1967) https://doi.org/10.
    1016/0022-5193(67)90051-3
    [9] Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscilla-
    tors. In: Araki, H. (ed.) International Symposium on Mathematical Problems in
    Theoretical Physics, pp. 420–422. Springer, Berlin, Heidelberg, Germany (1975).
    https://doi.org/10.1007/BFb0013365
    [10] Einstein, A.: On the electrodynamics of moving bodies. Annalen der Physik 17,
    891–921 (1905)
    [11] Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin,
    Heidelberg, Germany (1984). https://doi.org/10.1007/978-3-642-69689-3
    [12] Basnarkov, L., Urumov, V.: Phase transitions in the kuramoto model. Physical
    Review E 76(4), 057201 (2007) https://doi.org/10.1103/PhysRevE.76.057201
    [13] Paz ́o, D.: Thermodynamic limit of the first-order phase transition in the
    kuramoto model. Physical Review E 72(6), 046211 (2005) https://doi.org/10.
    1103/PhysRevE.72.046211
    [14] Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the kuramoto model
    37
    of coupled nonlinear oscillators. In: Proceedings of the 2004 American Control
    Conference, vol. 5, pp. 4296–43015 (2004). https://doi.org/10.23919/ACC.2004.
    1383983
    [15] Rodriguesm, F.A., Thomas, K.D.P., Ji, P., Kurths, J.: The kuramoto model in
    complex networks. Physics Reports 610, 1–98 (2016) https://doi.org/10.1016/j.
    physrep.2015.10.008
    [16] Budzinski, R.C., Nguyen, T.T., Do`an, J., Min ́aˇc, J., Sejnowski, T.J., Muller, L.E.:
    Geometry unites synchrony, chimeras, and waves in nonlinear oscillator networks.
    Chaos: An Interdisciplinary Journal of Nonlinear Science 32(3), 031104 (2022)
    https://doi.org/10.1063/5.0078791
    [17] Budzinski, R.C., Nguyen, T.T., Do`an, J., Min ́aˇc, J., Sejnowski, T.J., Muller, L.E.:
    Analytical prediction of specific spatiotemporal patterns in nonlinear oscillator
    networks with distance-dependent time delays. Phys. Rev. Res. 5, 013159 (2023)
    https://doi.org/10.1103/PhysRevResearch.5.013159
    [18] Ha, S., Ryoo, S.: Asymptotic phase-locking dynamics and critical coupling
    strength for the kuramoto model. Commun. Math Phys. 377, 811–857 (2020)
    https://doi.org/10.1007/s00220-020-03786-1
    [19] D ̈orfler, F., Bullo, F.: On the critical coupling for kuramoto oscillators. SIAM
    Journal on Applied Dynamical Systems 10, 1070–1099 (2011) https://doi.org/
    10.1137/10081530X
    [20] D ̈orfler, F., Bullo, F.: Synchronization and transient stability in power networks
    and nonuniform kuramoto oscillators. SIAM Journal on Control and Optimization
    50, 1616–1642 (2012) https://doi.org/10.1137/110851584
    [21] D ̈orfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: A
    survey. Automatica 50, 1539–1564 (2014) https://doi.org/10.1016/j.automatica.
    2014.04.012
    [22] Th ̈umler, M., Srinivas, S.G., Schr ̈oder, M., Timme, M.: Synchrony for weak cou-
    pling in the complexified kuramoto model. Physical Review Letters 130, 187201
    (2023) https://doi.org/10.1103/PhysRevLett.130.187201
    [23] B ̈ottcher, L., Porter, M.A.: Complex networks with complex weights (2023)
    [24] Lohe, M.A.: Non-abelian kuramoto models and synchronization. Journal of
    Physics A: Mathematical and Theoretical 42(39), 395101 (2009) https://doi.org/
    10.1088/1751-8113/42/39/395101
    [25] DeVille, L.: Synchronization and Stability for Quantum Kuramoto. Jour-
    nal of Statistical Physics 174, 160–189 (2019) https://doi.org/10.1007/
    s10955-018-2168-9
    38
    [26] Choi, S.-H., Ha, S.-Y.: Complete entrainment of lohe oscillators under
    attractive and repulsive couplings. SIAM Journal on Applied Dynam-
    ical Systems 13(4), 1417–1441 (2014) https://doi.org/10.1137/140961699
    https://doi.org/10.1137/140961699
    [27] Ha, S.-Y., Ko, D., Ryoo, S.-Y.: On the relaxation dynamics of lohe oscillators on
    some riemannian manifolds. Journal of Statistical Physics 172, 1427–1478 (2018)
    https://doi.org/10.1007/s10955-018-2091-0
    [28] Ha, S.-Y., Ko, D., Park, J., Zhang, X.: Collective synchronization of classical and
    quantum oscillators. EMS Surv. Math Sci 3(2), 209–267 (2016) https://doi.org/
    10.4171/EMSS/17
    [29] Bronski, J.C., Carty, T.E., DeVille, L.: Synchronisation conditions in the
    kuramoto model and their relationship to seminorms. Nonlinearity 34(8), 5399
    (2021) https://doi.org/10.1088/1361-6544/abf9ed
    [30] Bronski, J.C., DeVille, L., Jip Park, M.: Fully synchronous solutions and the
    synchronization phase transition for the finite-N Kuramoto model. Chaos: An
    Interdisciplinary Journal of Nonlinear Science 22(3), 033133 (2012) https://doi.
    org/10.1063/1.4745197
    [31] De Leo, S.: Quaternions and special relativity. Journal of Mathematical Physics
    37, 2955–2968 (1996) https://doi.org/10.1063/1.531548
    [32] Weiss, P.: On some applications of quaternions to restricted relativity and clas-
    sical radiation theory, vol. 46, pp. 129–168 (1940). http://www.jstor.org/stable/
    20490754
    [33] Saue, T.: Spin-interactions and the non-relativistic limit of electrodynamics.
    Advances in Quantum Chemistry 48, 383–405 (2005) https://doi.org/10.1016/
    S0065-3276(05)48020-X
    [34] Ward, J.P.: Quaternions and Cayley Numbers: Algebra and Applications.
    Springer, Dordrecht, Netherlands (2012)
    [35] Cahay, M., Purdy, G., Morris, D.: On the quaternion representation of the pauli
    spinor of an electron. Physica Scripta 94(8), 085205 (2019) https://doi.org/10.
    1088/1402-4896/ab156a
    [36] Ilamed, Y., Salingaros, N.: Algebras with three anticommuting elements. i. spinors
    and quaternions. Journal of Mathematical Physics 22(10), 2091–2095 (1981)
    https://doi.org/10.1063/1.524775
    [37] Saue, T., Jensen, H.A.: Quaternion symmetry in relativistic molecular calcu-
    lations: The dirac–hartree–fock method. The Journal of chemical physics 111,
    6211–6222 (1999) https://doi.org/10.1063/1.479958
    39
    [38] Onsager, L.: Crystal statistics. i. a two-dimensional model with an order-disorder
    transition. Phys. Rev. 65, 117–149 (1944) https://doi.org/10.1103/PhysRev.65.
    117
    [39] Li, Y., Wu, C.: High-dimensional topological insulators with quaternionic ana-
    lytic landau levels. Phys. Rev. Lett. 110, 216802 (2013) https://doi.org/10.1103/
    PhysRevLett.110.216802
    [40] Akemann, G., Kieburg, M., Mielke, A., Prosen, T.c.v.: Universal signature from
    integrability to chaos in dissipative open quantum systems. Phys. Rev. Lett. 123,
    254101 (2019) https://doi.org/10.1103/PhysRevLett.123.254101
    [41] ̈Unal, F.N., Bouhon, A., Slager, R.-J.: Topological euler class as a dynamical
    observable in optical lattices. Phys. Rev. Lett. 125, 053601 (2020) https://doi.
    org/10.1103/PhysRevLett.125.053601
    [42] Yang, E., Yang, B., You, O., Chan, H.-C., Mao, P., Guo, Q., Ma, S., Xia, L., Fan,
    D., Xiang, Y., Zhang, S.: Observation of non-abelian nodal links in photonics.
    Phys. Rev. Lett. 125, 033901 (2020) https://doi.org/10.1103/PhysRevLett.125.
    033901
    [43] Wang, M., Liu, S., Ma, Q., Zhang, R.-Y., Wang, D., Guo, Q., Yang, B., Ke, M.,
    Liu, Z., Chan, C.T.: Experimental observation of non-abelian earring nodal links
    in phononic crystals. Phys. Rev. Lett. 128, 246601 (2022) https://doi.org/10.
    1103/PhysRevLett.128.246601
    [44] Li, J., Prosen, T.c.v., Chan, A.: Spectral statistics of non-hermitian matrices and
    dissipative quantum chaos. Phys. Rev. Lett. 127, 170602 (2021) https://doi.org/
    10.1103/PhysRevLett.127.170602
    [45] Chang, H.T., Kuo, C.J., Lo, N.-W., Wei-Z.Lv: Dna sequence representation
    and comparison based on quaternion number system. International Journal of
    Advanced Computer Science and Applications 3(11) (2012) https://doi.org/10.
    14569/IJACSA.2012.031107
    [46] Brodzik, A.K.: Quaternionic periodicity transform: an algebraic solution to the
    tandem repeat detection problem. Bioinformatics 23(6), 694–700 (2007) https:
    //doi.org/10.1093/bioinformatics/btl674
    [47] Brodzik, A.K., Peters, O.: Symbol-balanced quaternionic periodicity transform for
    latent pattern detection in dna sequences. In: Proceedings. (ICASSP '05). IEEE
    International Conference on Acoustics, Speech, and Signal Processing, 2005., vol.
    5, pp. 373–3765 (2005). https://doi.org/10.1109/ICASSP.2005.1416318
    [48] Akhtar, M., Epps, J., Ambikairajah, E.: On dna numerical representations
    for period-3 based exon prediction. In: 2007 IEEE International Workshop on
    Genomic Signal Processing and Statistics, pp. 1–4 (2007). https://doi.org/10.
    40
    1109/GENSIPS.2007.4365821
    [49] Iqbal, N., Naqvi, R.A., Atif, M., Khan, M.A., Hanif, M., Abbas, S., Hussain,
    D.: On the image encryption algorithm based on the chaotic system, dna encod-
    ing, and castle. IEEE Access 9, 118253–118270 (2021) https://doi.org/10.1109/
    ACCESS.2021.3106028
    [50] Pletinckx, D.: Quaternion calculus as a basic tool in computer graphics. The
    Visual Computer 5(1-2), 2–13 (1989) https://doi.org/10.1007/BF01901476
    [51] Vince, J.: Quaternions for Computer Graphics. Springer, London, United King-
    dom (2011). https://doi.org/10.1007/978-1-4471-7509-4
    [52] Van Hemmen, J., Wreszinski, W.: Lyapunov function for the Kuramoto model
    of nonlinearly coupled oscillators. Journal of Statistical Physics 72(7), 145–166
    (1993) https://doi.org/10.1007/BF01048044
    [53] Hsia, C.-H., Jung, C.-Y., Kwon, B.: On the synchronization theory of kuramoto
    oscillators under the effect of inertia. Journal of Differential Equations 267(2),
    742–775 (2019) https://doi.org/10.1016/j.jde.2019.01.024
    [54] Chen, S.-H., Chu, C.-C., Hsia, C.-H., Shiue, M.-C.: Synchronization of hetero-
    geneous forced first-order kuramoto oscillator networks: A differential inequality
    approach. IEEE Transactions on Circuits and Systems I: Regular Papers 69(2),
    757–770 (2022) https://doi.org/10.1109/TCSI.2021.3115109
    [55] Chen, S.-H., Chu, C.-C., Hsia, C.-H., Moon, S.: Frequency synchronization of
    heterogeneous second-order forced kuramoto oscillator networks: A differential
    inequality approach. IEEE Transactions on Control of Network Systems 10(2),
    530–543 (2023) https://doi.org/10.1109/TCNS.2022.3219767
    [56] Chen, S.-H., Hsia, C.-H., Shiue, M.-C.: On mathematical analysis of synchro-
    nization to bidirectionally coupled kuramoto oscillators. Nonlinear Analysis: Real
    World Applications 56, 103169 (2020) https://doi.org/10.1016/j.nonrwa.2020.
    103169
    [57] Maistrenko, Y., Popovych, O., Burylk

    Presenters

    • Ting-Yang Hsiao

      University of Illinois at Urbana-Champaign

    Authors

    • Ting-Yang Hsiao

      University of Illinois at Urbana-Champaign

    • Yun-Feng Lo

      Georgia Institute of Technology School of Electrical and Computer Engineering

    • Winnie Wang

      University of Wisconsin - Madison

    View abstract →

  • Parametric Oscillator Networks Naturally Implement the Lagrange Multiplier Primal-Dual Algorithm for Combinatorial Optimization Problems

    ORAL

    Publication: 1. Preliminary version on arxiv: Sri Krishna Vadlamani, Tianyao Patrick Xiao, and Eli Yablonovitch. "Equivalence of coupled parametric oscillator dynamics to lagrange multiplier primal-dual optimization." arXiv preprint arXiv:2204.02472 (2022).

    2. Updated version under review at Physical Review Applied.

    Presenters

    • Sri Krishna Vadlamani

      Massachusetts Institute of Technology

    Authors

    • Sri Krishna Vadlamani

      Massachusetts Institute of Technology

    • Tianyao Patrick Xiao

      Sandia National Laboratories

    • Eli Yablonovitch

      University of California, Berkeley

    View abstract →

  • Associative memory for complex dynamical attractors in reservoir computing

    ORAL

    Publication: Reservoir-computing based associative memory of complex dynamical attractors. Ling-Wei Kong, Gene Brewer, and Ying-Cheng Lai. (Submitted manuscript)

    Presenters

    • Ling-Wei Kong

      Cornell University

    Authors

    • Ling-Wei Kong

      Cornell University

    • Gene A Brewer

      Arizona State University

    • Ying-Cheng Lai

      Arizona State University

    View abstract →

  • Energy-based Sequential Memory Networks at the Adiabatic Limit

    ORAL

    Publication: Arjun Karuvally, Terry J. Sejnowski, & Hava T. Siegelmann. (2022). Energy-based General Sequential Episodic Memory Networks at the Adiabatic Limit.

    Karuvally, A., Sejnowski, T. &; Siegelmann, H.T.. (2023). General Sequential Episodic Memory Model. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:15900-15910 Available from https://proceedings.mlr.press/v202/karuvally23a.html.

    Presenters

    • Arjun Karuvally

      University of Massachusetts Amherst

    Authors

    • Arjun Karuvally

      University of Massachusetts Amherst

    • Terrence J Sejnowski

      Salk Inst

    • Hava T Siegelmann

      University of Massachusetts Amherst

    View abstract →