Measurement of soft zero-pi qubit with parallel-plate capacitors

ORAL

Abstract

Decoherence protection of zero-pi qubits requires maximizing the charge-mode capacitance while simultaneously minimizing the flux-mode capacitance. One major limitation to realizing zero-pi qubits is the stray capacitance caused by the large charge-mode capacitor, which impedes decreasing the flux-mode capacitance. Deviating from the conventional coplanar interdigitated capacitor design, parallel-plate capacitors can be implemented with a much smaller area, achieving the desired large charge-mode capacitance while reducing unwanted stray capacitances. Here, we show the decoherence properties of this zero-pi qubit with parallel-plate capacitors in terms of its susceptibility against charge and flux noise. We discuss offset-charge calibration techniques done with this qubit and will present preliminary results on Raman-based qubit control. Lastly, we discuss a structural variation in the circuit that can potentially implement mode-selective qubit control while maintaining the qubit in the extended parameter regime compared to coplanar designs.

* This research was funded in part by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA) under contract number DE-SC0012704; by the U.S. Army Research Office (ARO) Multidisciplinary University Research Initiative (MURI) W911NF-18-1-0411; and by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. J.K and J.A. acknowledge support from the Korea Foundation for Advanced Studies. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.

Presenters

  • Junghyun Kim

    Massachusetts Institute of Technology

Authors

  • Junghyun Kim

    Massachusetts Institute of Technology

  • Ilan T Rosen

    Massachusetts Institute of Technology

  • Junyoung An

    Massachusetts Institute of Technology MI, Massachusetts Institute of Technology

  • Max Hays

    MIT, Massachusetts Institute of Technology (MIT), Massachusetts Institute of Technology MI, Massachusetts Institute of Technology, Massachussets Institute of Technology, Massachusetts Institute of Technology MIT

  • Agustin Di Paolo

    MIT, Massachusetts Institute of Technology

  • Leon Ding

    Massachusetts Institute of Technology MI, Massachusetts Institute of Technology

  • Kate Azar

    MIT Lincoln Laboratory, Wellesley Coll

  • Jeffrey M Gertler

    MIT Lincoln Laboratory, University of Massachusetts Amherst

  • Thomas M Hazard

    Lincoln Laboratory, Massachusetts Institute of Technology, MIT Lincoln Lab, MIT Lincoln Laboratory

  • Michael A Gingras

    MIT Lincoln Laboratory

  • Bethany Niedzielski

    MIT Lincoln Laboratory

  • Hannah M Stickler

    MIT Lincoln Laboratory

  • Katrina M Sliwa

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Mollie E Schwartz

    MIT Lincoln Laboratory

  • Jonilyn L Yoder

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Terry P Orlando

    Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology

  • Jeffrey A Grover

    Massachusetts Institute of Technology, Massachusetts Institute of Technology (MIT), Massachusetts Institute of Technology MIT

  • Kyle Serniak

    MIT Lincoln Laboratory & MIT RLE, MIT Lincoln Laboratory, MIT Lincoln Laboratory, MIT RLE

  • William D Oliver

    Massachusetts Institute of Technology MI, Massachusetts Institute of Technology, Massachusetts Institute of Technology (MIT), Massachusetts Institute of Technology MIT