Machine Learning of Molecules and Materials: Electronic Structure I
FOCUS · M60 · ID: 2159515
Presentations
-
Machine learning the Hohenberg-Kohn map to electronic excited states
ORAL
–
Publication: Y. Bai, L. Vogt-Maranto, M. E. Tuckerman, W. J. Glover, "Machine learning the Hohenberg-Kohn map to molecular excited states", Nat. Commun. 13, 7044 (2022)
Presenters
-
William J Glover
NYU Shanghai
Authors
-
Yuanming Bai
NYU Shanghai
-
Leslie Vogt-Maranto
New York University (NYU)
-
Mark E Tuckerman
New York University (NYU), New York Univ NYU
-
William J Glover
NYU Shanghai
-
-
Equivariant neural network for lattice models in condensed matter systems
ORAL
–
Presenters
-
Yunhao Fan
University of Virginia
Authors
-
Gia-Wei Chern
University of Virginia
-
Yunhao Fan
University of Virginia
-
-
Improving the Accuracy of Machine-Learning-Based Exchange Correlation Functionals for Predicting Electronic Properties
ORAL
–
Presenters
-
Xinyuan Liang
Peking Univ
Authors
-
Xinyuan Liang
Peking Univ
-
Mohan Chen
HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing 100871, Peking University, Peking Univ, Peking Unversity
-
-
Computational Graph Representation of Multiloop Feynman Diagrams
ORAL
–
Presenters
-
Tao Wang
University of Massachusetts Amherst
Authors
-
Tao Wang
University of Massachusetts Amherst
-
Pengcheng Hou
University of Science and Technology of China
-
Daniel P Cerkoney
Rutgers University, New Brunswick, Rutgers University
-
Zhiyi Li
University of science and technology of China
-
Xiansheng Cai
University of Massachusetts Amherst
-
Kun Chen
Flatiron Institute, Center for Computational Quantum Physics
-
-
Machine Learning Many-Body Green's Functions for Molecular Excitation Spectra
ORAL
–
Presenters
-
Tianyu Zhu
Yale University
Authors
-
Tianyu Zhu
Yale University
-
Christian Venturella
Yale University
-
Christopher Hillenbrand
Yale University
-
Jiachen Li
Yale University
-
-
Machine-learning tight-binding model for large-scale electronic-structure calculations
ORAL
–
Publication: M. Schwade, M.J. Schilcher C. Reverón Baecker, M. Grumet, D. A. Egger, arXiv:2308.08897 [cond-mat.mtrl-sci] (2023)
Presenters
-
Martin Schwade
Physics Department, TUM School of Natural Sciences, Technical University of Munich
Authors
-
Martin Schwade
Physics Department, TUM School of Natural Sciences, Technical University of Munich
-
David A Egger
Physics Department, TUM School of Natural Sciences, Technical University of Munich, Department of Physics, Technical University of Munich
-
-
Machine learning the electronic structure of molecules via the one-body reduced density matrix
ORAL
–
Presenters
-
Xuecheng Shao
Rutgers University - Newark
Authors
-
Xuecheng Shao
Rutgers University - Newark
-
Mark E Tuckerman
New York University (NYU), New York Univ NYU
-
Michele Pavanello
Rutgers University - Newark
-
-
Transport mechanism in Lithium thiophosphate
ORAL
–
Publication: Gigli, L.; Tisi, D.; Grasselli, F.; Ceriotti, M. Mechanism of charge transport in lithium
thiophosphate, in preparation.
Tisi, D.; Gigli, L.; Grasselli, F.; Ceriotti, M. Thermal transport in lithium thiophosphate by machine learning, in preparation.Presenters
-
Davide Tisi
Ecole Polytechnique Federale de Lausanne (EPFL), Federal Institute of Technology (EPFL)
Authors
-
Davide Tisi
Ecole Polytechnique Federale de Lausanne (EPFL), Federal Institute of Technology (EPFL)
-
Lorenzo Gigli
Ecole Polytechnique Federale de Lausanne (EPFL)
-
Federico Grasselli
Ecole Polytechnique Federale de Lausanne (EPFL)
-
Michele Ceriotti
Ecole Polytechnique Federale de Lausanne
-
-
Using Machine Learning to Establish the Importance of High-Level Electronic Structure: Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore
ORAL · Invited
–
Publication: J. Phys. Chem. Lett. 2023, 14, 29, 6610–6619
Presenters
-
Christine Isborn
University of California Merced
Authors
-
Christine Isborn
University of California Merced
-
Thomas E Markland
Stanford University
-
Michael Chen
New York University, Stanford University
-
Yuezhi Mao
San Diego State University
-
Andrew Snider
University of California Merced
-
Prachi Gupta
University of California Merced
-
Andres Montoya-Castillo
University of Colorado, University of Colorado, Boulder
-
Tim J Zuehlsdorff
Oregon State University
-
-
Reduced-density-matrix functional theory, many-body quantum resources, and machine learning
ORAL
–
Publication: C. L. Benavides-Riveros et al., Phys. Rev. Lett. 124, 180603 (2020).
J. Schmidt, M. Fadel, and C. L. Benavides-Riveros, Phys. Rev. Res. 3, L032063 (2021).
C. L. Benavides-Riveros et al., Phys. Rev. Lett. 129, 066401 (2022).
C. L. Benavides-Riveros, arXiv:2304.09056 (2023).
C. L. Benavides-Riveros, T. Wasak, and A. Recati, to be submitted.Presenters
-
Carlos L Benavides-Riveros
University of Trento
Authors
-
Carlos L Benavides-Riveros
University of Trento
-
Tomasz Wasak
Nicolaus Copernicus University in Torun
-
Alessio Recati
Pitaevskii BEC Center
-
Luis Colmenarez
RWTH Aachen University
-
-
Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function
ORAL
–
Presenters
-
Jiawei Zang
Columbia University
Authors
-
Jiawei Zang
Columbia University
-
Andrew Millis
Columbia University
-
Matija Medvidović
Columbia University; Center for Computational Quantum Physics, Flatiron Institute, Columbia University
-
Dominik Kiese
Center for Computational Quantum Physics, Flatiron Institute, Flatiron Institute, Simons Foundation
-
Domenico Di Sante
University of Bologna
-
Anirvan M Sengupta
Rutgers University, New Brunswick
-
-
Learning the density matrix, a symmetry rich encoding of the electronic density.
ORAL
–
Publication: Planned paper to describe the method in detail and show benchmark results.
Previous published approach:
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids. Peter Jorgensen and Arghya Bhowmik. Nature npj computational materials (2022)Presenters
-
Pol Febrer
Catalan Institute of Nanoscience and Nanotechnology - ICN2
Authors
-
Pol Febrer
Catalan Institute of Nanoscience and Nanotechnology - ICN2
-
Arghya Bhowmik
Denmark Technical University (DTU)
-
Miguel A Pruneda
Institut Català de Nanotecnologia (ICN2)
-
Alberto Garcia
Consejo Superior de Investigaciones Cientificas (CSIC)
-
Peter B Jorgensen
Denmark Technical University (DTU)
-
-
Circumventing the many-body problem by learning the two-body reduced density matrix
ORAL
–
Presenters
-
Jessica A. A Martinez B.
Rutgers University - Newark
Authors
-
Jessica A. A Martinez B.
Rutgers University - Newark
-
Xuecheng Shao
Rutgers University - Newark
-
Michele Pavanello
Rutgers University - Newark
-