Connecting relevant information to coarse-graining in biological systems
ORAL · Invited
Abstract
* This work was supported in part by the National Science Foundation, through the Center for the Physics of Biological Function (PHY-1734030); and by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award number DMR-2011854.
–
Publication: Palmer, S. E., Marre, O., Berry, M. J., & Bialek, W. (2015). Predictive information in a sensory population. Proceedings of the National Academy of Sciences, 112(22), 6908-6913.
Sederberg, A. J., MacLean, J. N., & Palmer, S. E. (2018). Learning to make external sensory stimulus predictions using internal correlations in populations of neurons. Proceedings of the National Academy of Sciences, 115(5), 1105-1110.
Sachdeva, V., Mora, T., Walczak, A. M., & Palmer, S. E. (2021). Optimal prediction with resource constraints using the information bottleneck. PLOS Computational Biology, 17(3), e1008743.
Kline, A. G., & Palmer, S. E. (2022). Gaussian information bottleneck and the non-perturbative renormalization group. New journal of physics, 24(3), 033007.
Kline, A. G., & Palmer, S. E. (2023). Multi-Relevance: Coexisting but Distinct Notions of Scale in Large Systems. arXiv preprint arXiv:2305.11009.
Presenters
-
Stephanie E Palmer
University of Chicago
Authors
-
Stephanie E Palmer
University of Chicago