Global and local approaches to detect subtle behavioural changes in large-scale behavioural screens
ORAL
Abstract
We propose multiple robust methods to mine detailed information from behavioural screens:
- - A generative method to regularize inference of larva shape across the entire screen.
- An unsupervised kernel-based statistical test to spot slight behavioural deviations.
- A generative model to identify significant changes in behavioural sequences.
- A suffix-tree-based method to group genetic lines based on frequent action sequences. We've successfully applied these methods to a screen analyzing the behaviours of 292,639 larvae across 593 genetic lines in response to an air puff.
* the INCEPTION project (PIA/ANR-16-CONV-0005, OG), and the “Investissements d’avenir” programme under the management of Agence Nationale de la Recherche, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute), the Agence Nationale de la Recherche program DECISIONSEQ, the federation pour la recherche sur le cerveau (FRC), and European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant.
–
Presenters
-
alexandre blanc
institut pasteur - CNRS - Universite paris cite - INRIA
Authors
-
jean-baptiste masson
institut pasteur - CNRS - Universite paris cite - INRIA
-
alexandre blanc
institut pasteur - CNRS - Universite paris cite - INRIA
-
françois Laurent
institut pasteur - CNRS - Universite paris cite - INRIA
-
christian L vestergaard
institut pasteur - CNRS - Universite paris cite - INRIA
-
tihana jovanic
Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
-
chloe barre
institut pasteur - CNRS - Universite paris cite - INRIA