Rydberg Parity Measurement
POSTER
Abstract
The combination of atom-light interaction coupling and Rydberg interaction has revolutionized the field of quantum technology, leading to a wide range of applications [1-13]. One such application is the non-destructive parity measurement of collective qubit states in multiple atoms with applications on Quantum computation, simulation, and optimization. In this talk, we propose a robust and high-fidelity scheme for constructing a non-destructive Rydberg parity meter. With this meter, we can determine the parity information of a bipartite state without destroying it, allowing us to utilize the output bipartite state for further quantum information processing tasks. Specifically, an auxiliary atom can sense the state of the plaquette spins and change its state only based on the parity of the central atom [12-13]. We then measure the state of the auxiliary atom to reveal the parity of the plaquette. We also analyze the performance of the Non-destructive Rydberg Parity Meter (NRPM) under realistic experimental parameters and consider the impact of decoherence sources.
References:
1- M. Khazali, K. Mølmer, Phys. Rev. X 10, 021054 (2020).
2- M. Khazali, Phys. Rev. A 98, 043836 (2018)
3- M. Khazali, H. W. Lau, A. Humeniuk, C. Simon, Phys. Rev. A 94, 023408 (2016)
4- M. Khazali, K. Heshami, C. Simon, Phys. Rev. A 91, 030301 (2015)
5- M. Khazali, C. Murry, T. Pohl, Phys. Rev. Lett. 123, 113605 (2019)
6- M. Khazali, K. Heshami, C. Simon J. Phys. B, 50, 21 (2017)
7- M. Khazali, Optics Express 31(9), 13970-13980 (2023)
8- M. Khazali, IJAP 10, 19 (2021)
9- Khazali, M. (2023). arXiv preprint arXiv:2301.04450.
10- M Khazali, Phys. Rev. Research 3, L032033 (2021)
11- M. Khazali, Quantum 6, 664 (2022).
12- Khazali, M., & Lechner, W. Communications Physics 6, 57 (2023).
13- Khazali, M. (2022). Photonic interface for long-distance entanglement of logical-qubits. arXiv preprint arXiv:2204.08522.
References:
1- M. Khazali, K. Mølmer, Phys. Rev. X 10, 021054 (2020).
2- M. Khazali, Phys. Rev. A 98, 043836 (2018)
3- M. Khazali, H. W. Lau, A. Humeniuk, C. Simon, Phys. Rev. A 94, 023408 (2016)
4- M. Khazali, K. Heshami, C. Simon, Phys. Rev. A 91, 030301 (2015)
5- M. Khazali, C. Murry, T. Pohl, Phys. Rev. Lett. 123, 113605 (2019)
6- M. Khazali, K. Heshami, C. Simon J. Phys. B, 50, 21 (2017)
7- M. Khazali, Optics Express 31(9), 13970-13980 (2023)
8- M. Khazali, IJAP 10, 19 (2021)
9- Khazali, M. (2023). arXiv preprint arXiv:2301.04450.
10- M Khazali, Phys. Rev. Research 3, L032033 (2021)
11- M. Khazali, Quantum 6, 664 (2022).
12- Khazali, M., & Lechner, W. Communications Physics 6, 57 (2023).
13- Khazali, M. (2022). Photonic interface for long-distance entanglement of logical-qubits. arXiv preprint arXiv:2204.08522.
Presenters
-
Hadis Salasi
Department of Physics, University of Tehran
Authors
-
Hadis Salasi
Department of Physics, University of Tehran
-
Mohammadsadegh Khazali
Department of Physics, University of Tehran, University of Teahran, University of Tehran