Towards quantum control of an ultracoherent mechanical resonator with a fluxonium qubit

ORAL

Abstract

Beyond their applications in quantum computing, superconducting qubits are a powerful platform to probe various quantum phenomena in the context of hybrid quantum systems [1]. However, most of them are confined to the GHz frequency domain, limiting the class of systems they can interact with. Building upon the heavy fluxonium architecture introduced by [2], we have developed a superconducting qubit with an unprecedentedly low transition frequency of 1.8 MHz [3]. Notably, we have demonstrated a qubit with a coherence time exceeding 30 μs, a sideband cooling scheme to prepare the qubit in a pure state with 97.7% fidelity, and single-shot readout capability. Moreover, by detecting a weak charge modulation by repeated qubit interrogation, we demonstrate the high-sensitivity of this qubit architecture to a nearly resonant AC-charge drive, proving its potential in a hybrid circuit scenario. We will finally present our recent efforts to achieve the strong coupling regime between this qubit and an ultra-coherent softly-clamped mechanical membrane.

[1] Y. Chu et al. Nature 563, 666 (2018).

[2] H. Zhang et al. Physical Review X 11, 011010 (2021).

[3] Najera et al. arXiv:2307.14329 (2023). In review at PRX.

Publication: High-sensitivity AC-charge detection with a MHz-frequency fluxonium qubit, B.-L. Najera-Santos et al. 2023
https://arxiv.org/abs/2307.14329

Presenters

  • Kyrylo Gerashchenko

    Laboratoire Kastler Brossel, CNRS

Authors

  • Kyrylo Gerashchenko

    Laboratoire Kastler Brossel, CNRS

  • Baldo Luis Najera Santos

    Laboratoire Kastler Brossel, CNRS, Sorbonne Université, ENS-Université PSL, Collège de France

  • Rémi Rousseau

    ALICE & BOB

  • Himanshu Patange

    Laboratoire Kastler Brossel, CNRS, Sorbonne Université, ENS-Université PSL, Collège de France

  • Angela Riva

    LPENS, Département de physique, Ecole normale supérieure, Centre Automatique et Systèmes (CAS), MINES ParisTech, Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris, Inria

  • Marius Villiers

    Ecole Normale Superieure

  • Tristan Briant

    Laboratoire Kastler Brossel, CNRS, Sorbonne Université, ENS-Université PSL, Collège de France

  • Pierre-Francois Cohadon

    Laboratoire Kastler Brossel, CNRS, Sorbonne Université, ENS-Université PSL, Collège de France

  • Antoine Heidmann

    Laboratoire Kastler Brossel, CNRS, Sorbonne Université, ENS-Université PSL, Collège de France

  • Helene Le Sueur

    Quantronics group, Université Paris-Saclay, CEA, CNRS, SPEC

  • Alain Sarlette

    Inria Paris / Ghent University, INRIA, Centre Automatique et Systèmes, Mines Paris, Inria

  • Clarke Smith

    Ecole Normale Supérieure

  • Zaki Leghtas

    Mines ParisTech

  • Emmanuel Flurin

    CEA-Saclay

  • Jose Palomo

    Laboratoire de Physique de l' École Normale Supérieure, ENS, Université PSL, CNRS

  • Michael Rosticher

    Laboratoire de Physique de l' École Normale Supérieure, ENS, Université PSL, CNRS

  • Thibaut Jacqmin

    Laboratoire Kastler Brossel, CNRS, Sorbonne Université, ENS-Université PSL, Collège de France

  • Samuel Deléglise

    LKB, Laboratoire Kastler Brossel, CNRS, Sorbonne Université, ENS-Université PSL, Collège de France