Predicting Josephson Junction Critical Current from Room Temperature Data

ORAL

Abstract

Superconducting qubits are a promising technology to realize fault-tolerant quantum computers. To realize this promise at scale, it is essential to be able to predict the cryogenic performance of Josephson junctions from room temperature measurements of Josephson junctions. This can be accomplished by using the Ambegaokar-Baratoff relation to predict critical current of a junction from a series of room temperature junction resistances. These predictions taken at face value are not necessarily accurate. In this talk, we will discuss different data analysis techniques and mitigation strategies to use room temperature resistance data to more accurately predict cold junction critical current and qubit frequency.

* This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. government or the U.S. Air Force.

Presenters

  • Hannah M Stickler

    MIT Lincoln Laboratory

Authors

  • Hannah M Stickler

    MIT Lincoln Laboratory

  • Michael A Gingras

    MIT Lincoln Laboratory

  • Bethany M Niedzielski

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • David K Kim

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Jeffrey Knecht

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Kate Azar

    MIT Lincoln Laboratory, Wellesley Coll

  • Greg Calusine

    MIT Lincoln Lab

  • Ali Sabbah

    MIT Lincoln Laboratory

  • Felipe Contipelli

    MIT Lincoln Laboratory

  • Duncan Miller

    MIT Lincoln Laboratory

  • Arthur Kurlej

    MIT Lincoln Laboratory

  • Jonilyn L Yoder

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • William D Oliver

    Massachusetts Institute of Technology MI, Massachusetts Institute of Technology, Massachusetts Institute of Technology (MIT), Massachusetts Institute of Technology MIT

  • Mollie E Schwartz

    MIT Lincoln Laboratory

  • Kyle Serniak

    MIT Lincoln Laboratory & MIT RLE, MIT Lincoln Laboratory, MIT Lincoln Laboratory, MIT RLE