Machine Learning of Molecules and Materials: Electronic Structure II
FOCUS · Q60 · ID: 2159596
Presentations
-
Machine-learning for electronic structure
ORAL · Invited
–
Publication: C. Ben Mahmoud, F. Grasselli, and M. Ceriotti, "Predicting hot-electron free energies from ground-state data," Phys. Rev. B 106(12), L121116 (2022).
A. Grisafi, A. M. Lewis, M. Rossi, and M. Ceriotti, "Electronic-Structure Properties from Atom-Centered Predictions of the Electron Density," J. Chem. Theory Comput. 19(14), 4451–4460 (2023).
E. Cignoni, D. Suman, J. Nigam, L. Cupellini, B. Mennucci and M. Ceriotti, "Electronic excited states from physically-constrained machine learning", arXiv:2311.00844Presenters
-
Michele Ceriotti
Ecole Polytechnique Federale de Lausanne
Authors
-
Michele Ceriotti
Ecole Polytechnique Federale de Lausanne
-
-
Applying a Well-Defined Energy Density for Machine-Learned Density Functionals
ORAL
–
Presenters
-
Elias Polak
University of Fribourg
Authors
-
Elias Polak
University of Fribourg
-
Stefan Vuckovic
University of Fribourg
-
Heng Zhao
University of Fribourg
-
-
Electronic Structures of Mesoscopic Systems: Unlocking Opportunities with Machine Learning and Orbital-Free Embedding
ORAL
–
Publication: Shao, X., Paetow, L., Tuckerman, M.E., Pavanello, M., Machine learning electronic structure methods based on the one-electron reduced density matrix. Nat Commun 14, 6281 (2023)
Jessica A. Martinez B, Lukas Paetow, Johannes Tölle, Xuecheng Shao, Pablo Ramos, Johannes Neugebauer, and Michele Pavanello. Which Physical Phenomena Determine the Ionization Potential of Liquid Water? The Journal of Physical Chemistry B, 127 (24), 5470-5480 (2023)
Xuecheng Shao, Andres Cifuentes Lopez, Md Rajib Khan Musa, Mohammad Reza Nouri, and Michele Pavanello
Adaptive subsystem density functional theory. Journal of Chemical Theory and Computation, 18 (11), 6646-6655 (2022)
K Jiang, X Shao, M Pavanello. Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory. Physical Review B 104, 235110 (2021)Presenters
-
Michele Pavanello
Rutgers University - Newark
Authors
-
Michele Pavanello
Rutgers University - Newark
-
-
Pushing deep neural quantum states toward machine precision
ORAL
–
Presenters
-
Ao Chen
University of Augsburg
Authors
-
Ao Chen
University of Augsburg
-
Markus Heyl
University of Augsburg
-
-
Improving neural network performance for solving quantum sign structure
ORAL
–
Presenters
-
Xiaowei Ou
Yale University
Authors
-
Xiaowei Ou
Yale University
-
Vidvuds Ozolins
Yale University
-
-
Spectral operator representations
ORAL
–
Presenters
-
Austin Zadoks
École Polytechnique Fédérale de Lausanne
Authors
-
Austin Zadoks
École Polytechnique Fédérale de Lausanne
-
Nicola Marzari
Ecole Polytechnique Federale de Lausanne, THEOS, EPFL; NCCR MARVEL; LSM Paul Scherrer Insitut, EPFL, THEOS, EPFL; NCCR, MARVEL; LMS, Paul Scherrer Institut
-
Antimo Marrazzo
University of Trieste
-
-
Nonlocal neural-network distillation of many-electron density functional theory
ORAL
–
Presenters
-
Matija Medvidović
Columbia University; Center for Computational Quantum Physics, Flatiron Institute, Columbia University
Authors
-
Matija Medvidović
Columbia University; Center for Computational Quantum Physics, Flatiron Institute, Columbia University
-
Iman Ahmadabadi
University of Maryland, College Park-Princeton University, University of Maryland, College Park - Flatiron Institute
-
Jaylyn C Umana
The Graduate Center, City University of New York; Center for Computational Quantum Physics, Flatiron Institute, The Graduate Center, City University of New York
-
Domenico Di Sante
University of Bologna
-
Johannes Flick
City College of New York; The Graduate Center, City University of New York; Center for Computational Quantum Physics, Flatiron Institute, City College of New York, Center for Computational Quantum Physics, Flatiron Institute, City College of New York - Flatiron Institute
-
Angel Rubio
Max Planck Institute for the Structure & Dynamics of Matter, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Institute for the Structure &, Max Planck Institute for the Structure & Dynamics of Matter; Center for Computational Quantum Physics, Flatiron Institute, Center for Computational Quantum Physics, Flatiron Institute, Max Planck Institute for the Structure and Dynamics of Matter - Flatiron Institute, Max Planck Institute for Structure and Dynamics of Matter
-
-
Automatic differentiation approach for obtaining exchange-correlation functional derivatives
ORAL
–
Presenters
-
Jaylyn C Umana
The Graduate Center, City University of New York; Center for Computational Quantum Physics, Flatiron Institute, The Graduate Center, City University of New York
Authors
-
Jaylyn C Umana
The Graduate Center, City University of New York; Center for Computational Quantum Physics, Flatiron Institute, The Graduate Center, City University of New York
-
Matija Medvidović
Columbia University; Center for Computational Quantum Physics, Flatiron Institute, Columbia University
-
Angel Rubio
Max Planck Institute for the Structure & Dynamics of Matter, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Institute for the Structure &, Max Planck Institute for the Structure & Dynamics of Matter; Center for Computational Quantum Physics, Flatiron Institute, Center for Computational Quantum Physics, Flatiron Institute, Max Planck Institute for the Structure and Dynamics of Matter - Flatiron Institute, Max Planck Institute for Structure and Dynamics of Matter
-
Johannes Flick
City College of New York; The Graduate Center, City University of New York; Center for Computational Quantum Physics, Flatiron Institute, City College of New York, Center for Computational Quantum Physics, Flatiron Institute, City College of New York - Flatiron Institute
-
-
Predicting Quantum Monte Carlo Charge Densities using Graph Neural Networks
ORAL
–
Presenters
-
Ganesh Panchapakesan
Oak Ridge National Lab, Oak Ridge National Laboratory
Authors
-
Ganesh Panchapakesan
Oak Ridge National Lab, Oak Ridge National Laboratory
-
Abdulgani Annaberdiyev
Oak Ridge National Lab
-
Fan Shu
Georgia Institute of Technology
-
Victor Fung
Georgia Institute of Technology
-
-
Simple and Effective: Machine Learning-Driven Nonlocal Functionals for Orbital-Free DFT
ORAL
–
Presenters
-
Valeria Rios Vargas
Rutgers University
Authors
-
Valeria Rios Vargas
Rutgers University
-
Xuecheng Shao
Rutgers University - Newark
-
Michele Pavanello
Rutgers University - Newark
-
-
Accelerating electronic structure calculations using an E(3)-equivariant neural network
ORAL
–
Publication: [1] X. Gong, H. Li, N. Zou, R. Xu, W. Duan and Y. Xu, Nat. Commun. 14, 2848 (2023).
[2] H. Li, Z. Wang, N. Zou, M. Ye, R. Xu, X. Gong, W. Duan and Y. Xu, Nat. Comput. Sci. 2, 367 (2022).
[3] H. Li, Z. Tang, X. Gong, N. Zou, W. Duan and Y. Xu, Nat. Comput. Sci. 3, 321 (2023).
[4] Z. Tang, H. Li, P. Lin, X. Gong, G. Jin, L. He, H. Jiang, X. Ren, W. Duan and Y. Xu, arXiv:2302.08211 (2023).Presenters
-
Xiaoxun Gong
University of California, Berkeley
Authors
-
Xiaoxun Gong
University of California, Berkeley
-
He Li
Tsinghua University
-
Steven G Louie
University of California at Berkeley, University of California at Berkeley and Lawrence Berkeley National Laboratory, University of California at Berkeley, and Lawrence Berkeley National Laboratory, UC-Berkeley
-
Wenhui Duan
Tsinghua University
-
Yong Xu
Tsinghua University
-
-
Comparing variants of Neural Network Backflow and Hidden Fermion Determinant States
ORAL
–
Presenters
-
Zejun Liu
University of Illinois Urbana-Champaign
Authors
-
Zejun Liu
University of Illinois Urbana-Champaign
-
Bryan K Clark
University of Illinois at Urbana-Champaign
-