Non-mean-field-like gap formation in the ultra-nodal pairing state of tetragonal FeSe1-xSx
ORAL
Abstract
The isovalently substituted FeSe1-xSx superconductors have attracted significant interest due to various exotic properties associated with the intertwining of nematicity, magnetism, and unconventional superconductivity [1]. Of particular interest is the abrupt change in the superconducting gap function that occurs at the nematic critical point at xc ~ 0.17 [2-6], above which the formation of an ultra-nodal pairing state with a putative Bogolubov Fermi surface has been proposed [5-10]. Although the emergence of the Bogoluvov Fermi surface appears to reasonably explain the huge residual density of states observed in the tetragonal FeSe1-xSx, the nature of the exotic pairing state remains largely elusive, including the links between the ultra-nodal state and the colossal fluctuation-like behavior reported in the previous experiments [11]. Here, using the high-quality single crystals of FeSe1-xSx and the precise measurements of thermodynamic and charge transport properties, we discuss the gap formation of the ultra-nodal pairing state, which deviates from the mean-field-like behavior. In addition, we report the evolution of the superconducting gap in FeSe1-xSx under high pressures, where striking enhancement of Tc is found in the non-magnetic tetragonal regime [12]. The results provide fresh insights into our understanding of the ultra-nodal pairing state.
[1] T. Shibauchi, T. Hanaguri, Y. Matsuda, J. Phys. Soc. Jpn. 89, 102002 (2020).
[2] S. Hosoi et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8139 (2016).
[3] Y. Sato et al., Proc. Natl. Acad. Sci. U.S.A. 115, 1227 (2018).
[4] T. Hanaguri et al., Sci. Adv. 4, eaar6419 (2018).
[5] T. Matsuura et al., Proc. Natl. Acad. Sci. U.S.A. 120, e2208276120 (2023).
[6] T. Nagashima et al., https://doi.org/10.21203/rs.3.rs-2224728/v1
[7] C. Setty et al., Nat. Commun. 11, 523 (2020); Phys. Rev. B 102, 064504 (2020).
[8] A. Kreisel, P.J. Hirschfeld, B. M. Andersen, Symmetry 12, 1402 (2020).
[9] Y. Cao et al., arXiv:2305.15569.
[10] H. Wu et al., arXiv:2306.11200.
[11] Y. Mizukami et al., Commun. Phys. 6, 183 (2023).
[12] K. Matsuura et al., Nat. Commun. 8, 1143 (2017).
[1] T. Shibauchi, T. Hanaguri, Y. Matsuda, J. Phys. Soc. Jpn. 89, 102002 (2020).
[2] S. Hosoi et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8139 (2016).
[3] Y. Sato et al., Proc. Natl. Acad. Sci. U.S.A. 115, 1227 (2018).
[4] T. Hanaguri et al., Sci. Adv. 4, eaar6419 (2018).
[5] T. Matsuura et al., Proc. Natl. Acad. Sci. U.S.A. 120, e2208276120 (2023).
[6] T. Nagashima et al., https://doi.org/10.21203/rs.3.rs-2224728/v1
[7] C. Setty et al., Nat. Commun. 11, 523 (2020); Phys. Rev. B 102, 064504 (2020).
[8] A. Kreisel, P.J. Hirschfeld, B. M. Andersen, Symmetry 12, 1402 (2020).
[9] Y. Cao et al., arXiv:2305.15569.
[10] H. Wu et al., arXiv:2306.11200.
[11] Y. Mizukami et al., Commun. Phys. 6, 183 (2023).
[12] K. Matsuura et al., Nat. Commun. 8, 1143 (2017).
* This work is supported by Grants-in-Aid for Scientific Research (KAKENHI) (Nos. JP21H04443, JP22KK0036) and on Innovative Areas "Quantum Liquid Crystals" (No. 19H05824) from the JSPS.
–
Presenters
-
Shigeru Kasahara
Okayama University
Authors
-
Shigeru Kasahara
Okayama University
-
Kazuto Akiba
Okayama University
-
Yuya Kitanishi
Okayama University
-
Kaoru Tanaka
Okayama University
-
Hideaki Fujii
Okayama University
-
Tatsuo C Kobayashi
Okayama University
-
Takumi Kihara
Okayama University