Data Science, AI and Machine Learning in Physics I
FOCUS · S18 · ID: 2155862
Presentations
-
Combining data, physics and machine learning for accelerating materials computations
ORAL · Invited
–
Publication: [1] K. Bystrom, B. Kozinsky, arXiv:2303.00682 (2023)
[2] S. Batzner et al, Nature Comm. 13 (1), 2453 (2022)
[3] A. Musaelian, S. Batzner et al, Nature Comm. 14, 579 (2023)
[4] J. Vandermause et al, Nature Comm. 13 (1), 5183 (2022)
Presenters
-
Boris Kozinsky
Harvard University
Authors
-
Boris Kozinsky
Harvard University
-
-
Performing Hartree-Fock many-body physics calculations with large language models
ORAL
–
Presenters
-
Eun-Ah Kim
Cornell University
Authors
-
Eun-Ah Kim
Cornell University
-
Haining Pan
Rutgers University
-
Nayantara Mudur
Google Research/Harvard University
-
William Taranto
Cornell University
-
Subhashini Venugopalan
Google Research
-
Yasaman Bahri
Google LLC
-
Michael P Brenner
Harvard University
-
-
Towards Open Science in Materials Synthesis and Characterization: Experiences from the 2DCC
ORAL
–
Presenters
-
Anthony R Richardella
Pennsylvania State University
Authors
-
Anthony R Richardella
Pennsylvania State University
-
Konrad Hilse
Pennsylvania State University
-
Kevin Dressler
Pennsylvania State University
-
Wesley F Reinhart
Pennsylvania State University, Penn State
-
Joan M Redwing
Pennsylvania State University
-
Nitin Samarth
Pennsylvania State University
-
Vincent H Crespi
Pennsylvania State University
-
-
Complex Langevin and machine learning approaches to the non-linear sigma model with a topological term
ORAL
–
Presenters
-
Casey Berger
Smith College
Authors
-
Casey Berger
Smith College
-
Adelaide Esseln
Smith College
-
-
Machine learning of quantum walk with classical randomness
ORAL
–
Publication: Phys. Rev. E 108, 035308 (2023)
Presenters
-
Christopher Mastandrea
University of California, Merced
Authors
-
Christopher Mastandrea
University of California, Merced
-
Chih-Chun Chien
University of California, Merced
-
-
Machine Learning Discovery of a New Descriptor for Topological Semimetal
ORAL
–
Presenters
-
YANJUN LIU
Cornell University
Authors
-
YANJUN LIU
Cornell University
-
Krishnanand M Mallayya
Cornell University
-
Milena Jovanovic
Princeton University
-
Wesley J Maddox
Jump Trading LLC
-
Andrew G Wilson
New York University
-
Sebastian Klemenz
Fraunhofer IWKS
-
Leslie M Schoop
Princeton University
-
Eun-Ah Kim
Cornell University
-
-
Variational formulation of physics-informed neural networks
ORAL
–
Presenters
-
Chinmay Katke
Virginia Tech
Authors
-
Chinmay Katke
Virginia Tech
-
C. Nadir Kaplan
Virginia Tech
-
-
A data-driven framework for non-stationary complex systems: Blending generalized Langevin and neural ordinary-differential equations.
ORAL
–
Publication: Manuscript submitted to Chaos journal focus issue: Data-Driven Models and Analysis of Complex Systems.
Presenters
-
Antonio Malpica-Morales
Imperial College London
Authors
-
Antonio Malpica-Morales
Imperial College London
-
Serafim Kalliadasis
Imperial College London
-
Miguel A Duran-Olivencia
Imperial College London
-
-
Machine Learning for Adsorption Processes
ORAL · Invited
–
Publication: Y.Z.S. Sun, R.F. DeJaco, and J.I. Siepmann, 'Deep neural network learning of complex binary sorption equilibria from molecular simulation data,' Chem. Sci. 10, 4377–4388 (2019).
K. Shi, Z. Li, D.M. Anstine, D. Tang, C.M. Colina, D.S. Sholl, J.I. Siepmann, and R.Q. Snurr, 'Two-dimensional energy histograms as features for machine learning to predict adsorption in diverse nanoporous materials,' J. Chem. Theory Comput. 23, 4568–4583 (2023).Presenters
-
J. Ilja Siepmann
University of Minnesota
Authors
-
J. Ilja Siepmann
University of Minnesota
-
-
Optimization of physical quantities in the autoencoder latent space
ORAL
–
Publication: Park, S.M., Yoon, H.G., Lee, D.B. et al. Optimization of physical quantities in the autoencoder latent space. Sci Rep 12, 9003 (2022). https://doi.org/10.1038/s41598-022-13007-5
Presenters
-
Seong Min Park
Kyung Hee University, KyungHee University
Authors
-
Seong Min Park
Kyung Hee University, KyungHee University
-
Changyeon Won
Kyung Hee University, KyungHee University
-
Han Gyu Yoon
Kyung Hee university, KyungHee University, Kyung Hee University
-
Doo Bong Lee
Kyung Hee University, KyungHee University
-
Jun Woo Choi
Korea Institute of Science and Technology, Korea Institute of science and technology, KIST
-
Hee Young Kwon
Korea Institute of Science and Technology, Korea Institute of science and technology
-
-
Crystal structure generative modeling based on diffusion probabilistic models and variational autoencoder
ORAL
–
Publication: Teerachote Pakornchote, Natthaphon Choomphon-anomakhun, Sorrjit Arrerut, Chayanon Atthapak, Sakarn Khamkaeo, Thiparat Chotibut, and Thiti Bovornratanaraks, "Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling", arXiv:2308.02165.
Presenters
-
Teerachote Pakornchote
Chulalongkorn University
Authors
-
Teerachote Pakornchote
Chulalongkorn University
-
Natthaphon Choomphon-anomakhun
Chulalongkorn University
-
Sorrjit Arrerut
Chulalongkorn University
-
Chayanon Atthapak
Chulalongkorn University
-
Sakarn Khamkaeo
Chulalongkorn University
-
Thiparat Chotibut
Chulalongkorn University
-
Thiti Bovornratanaraks
Chulalongkorn University
-