Computational Materials Discovery for Carbon Dioxide Capture Applications
ORAL · Invited
Abstract
References
[1] Giro, R., Hsu, H., Kishimoto, A. et al. AI powered, automated discovery of polymer membranes for carbon capture. NPJ Comput Mater 9, 133 (2023). https://doi.org/10.1038/s41524-023-01088-3.
[2] Ferrari, B.S., Manica, M., Giro, R. et al. Predicting polymerization reactions via transfer learning using chemical language models. arXiv preprint (2023). https://arxiv.org/abs/2310.11423.
[3] Oliveira, F.L., Cleeton, C., Neumann Barros Ferreira, R. et al. CRAFTED: An exploratory database of simulated adsorption isotherms of metal-organic frameworks. Sci Data 10, 230 (2023). https://doi.org/10.1038/s41597-023-02116-z.
[4] Zheng, B., Lopes Oliveira, F., Neumann Barros Ferreira, R. et al. Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO2’s Chemisorption and Diffusion in Mg-MOF-74. ACS Nano 17 (6), 5579-5587 (2023). https://doi.org/10.1021/acsnano.2c11102.
[5] Cipcigan, F., Booth, J., Neumann Barros Ferreira, R. et al. Discovery of Novel Reticular Materials for Carbon Dioxide Capture using GflowNets. arXiv preprint (2023). https://arxiv.org/abs/2310.07671.
–
Publication: [1] Giro, R., Hsu, H., Kishimoto, A. et al. AI powered, automated discovery of polymer membranes for carbon capture. NPJ Comput Mater 9, 133 (2023). https://doi.org/10.1038/s41524-023-01088-3.
[2] Ferrari, B.S., Manica, M., Giro, R. et al. Predicting polymerization reactions via transfer learning using chemical language models. arXiv Preprint (2023). https://arxiv.org/abs/2310.11423.
[3] Oliveira, F.L., Cleeton, C., Neumann Barros Ferreira, R. et al. CRAFTED: An exploratory database of simulated adsorption isotherms of metal-organic frameworks. Sci Data 10, 230 (2023). https://doi.org/10.1038/s41597-023-02116-z.
[4] Zheng, B., Lopes Oliveira, F., Neumann Barros Ferreira, R. et al. Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO2's Chemisorption and Diffusion in Mg-MOF-74. ACS Nano 17 (6), 5579-5587 (2023). https://doi.org/10.1021/acsnano.2c11102.
[5] Cipcigan, F., Booth, J., Neumann Barros Ferreira, R. et al. Discovery of Novel Reticular Materials for Carbon Dioxide Capture using GflowNets. arXiv Preprint (2023). https://arxiv.org/abs/2310.07671.
Presenters
-
Mathias B Steiner
IBM Research - Brazil, IBM Research
Authors
-
Mathias B Steiner
IBM Research - Brazil, IBM Research