Advances in AI/ML-Driven Sampling for Atomistic Simulations
FOCUS · T18 · ID: 2155854
Presentations
-
Walking the surfaces with AI-powered MD simulations
ORAL · Invited
–
Presenters
-
Sapna Sarupria
University of Minnesota
Authors
-
Sapna Sarupria
University of Minnesota
-
Varun Gopal
University of Minnesota - Twin Cities
-
Salman Bin Kashif
Clemson University
-
-
Enhanced Sampling using Birth-Death Algorithm
ORAL
–
Presenters
-
ARCHANA GOPAKUMAR REMANIDEVI
Max Planck Institute for Polymer Research
Authors
-
ARCHANA GOPAKUMAR REMANIDEVI
Max Planck Institute for Polymer Research
-
Benjamin Pampel
Max Planck Institute for Polymer Research
-
Simon Holbach
Institut für Mathematik, Johannes Gutenberg-Universität Mainz
-
Lisa Hartung
Institut für Mathematik, Johannes Gutenberg-Universität Mainz
-
Omar Valsson
University of North Texas
-
Burkhard Dunweg
Max Planck Institute for Polymer Research
-
-
Stochastic Resetting for Enhanced Sampling
ORAL
–
Publication: 1. Ofir Blumer, Shlomi Reuveni, and Barak Hirshberg, The Journal of Physical Chemistry Letters 2022 13 (48), 11230-11236, DOI: 10.1021/acs.jpclett.2c03055
2. Blumer, Ofir, Shlomi Reuveni, and Barak Hirshberg. "Resetting Metadynamics." arXiv preprint arXiv:2307.06037 (2023).Presenters
-
Ofir Blumer
Tel Aviv univercity
Authors
-
Ofir Blumer
Tel Aviv univercity
-
Shlomi Reuveni
Tel Aviv univercity
-
Barak Hirshberg
Tel Aviv univercity
-
-
Manifold Learning of Collective Variables for Enhanced Sampling Simulations
ORAL
–
Publication: - J. Rydzewski and O. Valsson, "Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling", J. Phys. Chem. A, 125, 6286 (2021) - DOI: 10.1021/acs.jpca.1c02869
- J. Rydzewski, M. Chen, T. K. Ghosh, and O. Valsson, "Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations", J. Chem. Theory Comput. 18, 7179-7192 (2022) - DOI: 10.1021/acs.jctc.2c00873
- J. Rydzewski, M. Chen, and O. Valsson, "Manifold Learning in Atomistic Simulations: A Conceptual Review", Mach. Learn.: Sci. Technol. 4, 031001 (2023) - DOI:10.1088/2632-2153/ace81a
Presenters
-
Omar Valsson
University of North Texas
Authors
-
Omar Valsson
University of North Texas
-
-
Efficient Sampling for Structure Search Using VAE-Organized Latent Spaces and Genetic Algorithms
ORAL
–
Presenters
-
Chaitanya Kolluru
Argonne National Laboratory
Authors
-
Chaitanya Kolluru
Argonne National Laboratory
-
Nina Andrejevic
Argonne National Laboratory
-
Maria K Chan
Argonne National Laboratory
-
-
Complex local environments classification of shape particles through shape-symmetry encoded data augmentation.
ORAL
–
Presenters
-
Alex Lee
University of Michigan, Ann Arbor, University of Michigan
Authors
-
Alex Lee
University of Michigan, Ann Arbor, University of Michigan
-
Sharon C Glotzer
University of Michigan, University of Michigan, Ann Arbor
-
Sun-Ting Tsai
University of Michigan, Ann Arbor
-
-
Learning all-atom molecular reactions using data-driven approaches
ORAL
–
Presenters
-
Julia H Yang
Harvard University
Authors
-
Julia H Yang
Harvard University
-
Whai Shin Amanda Ooi
Columbia University
-
Zachary A Goodwin
Harvard University, Imperial College London
-
Yu Xie
Harvard University
-
Ah-Hyung Alissa Park
University of California, Los Angeles
-
Boris Kozinsky
Harvard University
-
-
Exploring transferability of machine learning interatomic potentials for reactive chemistry
ORAL
–
Publication: Doi.org/10.1039/D3DD00051F
Presenters
-
Quin H Hu
University of Minnesota
Authors
-
Quin H Hu
University of Minnesota
-
Jason D Goodpaster
University of Minnesota
-
-
Active Learning of Diffusion Pathways for Machine-Learned Interatomic Potentials
ORAL
–
Presenters
-
Michael J Waters
Northwestern University
Authors
-
Michael J Waters
Northwestern University
-
James M Rondinelli
Northwestern University
-
-
Modeling reaction-diffusion in the liquid-phase heterogeneous catalysis using machine-learned force field.
ORAL
–
Presenters
-
Neeraj Rai
Mississippi State University
Authors
-
Neeraj Rai
Mississippi State University
-
Woodrow Wilson
Mississippi State Univesity
-
-
Charge-dependent atomic cluster expansions
ORAL
–
Publication: Goff, James, et al. "Shadow molecular dynamics and atomic cluster expansions for flexible charge models." Journal of Chemical Theory and Computation 19.13 (2023): 4255-4272.
Presenters
-
James M Goff
Sandia National Laboratories
Authors
-
James M Goff
Sandia National Laboratories
-
-
Rapidly converging cluster expansions by transfer learning from empirical potentials
ORAL
–
Publication: A. Dana, L. Mu, S.B. Sinnott, I. Dabo , Rapidly converging cluster expansions by transfer learning from empirical potentials. (planned paper)
Presenters
-
Amirreza Dana
Pennsylvania State University
Authors
-
Amirreza Dana
Pennsylvania State University
-
Ismaila Dabo
Pennsylvania State University
-
Susan B Sinnott
Pennsylvania State University
-
Lingxiao Mu
Pennsylvania State University
-
-
Accelerated Predictions of Charge Density Evolution in MD simulations Using Machine Learning
ORAL
–
Presenters
-
Aditya Venkatraman
Sandia National Laboratories
Authors
-
Aditya Venkatraman
Sandia National Laboratories
-
Mark A Wilson
Sandia National Laboratories
-
David Montes de Oca Zapiain
Sandia National laboratories, Sandia National Laboratories
-