Quantum Machine Learning Training and Beyond
FOCUS · T51 · ID: 2155036
Presentations
-
On quantum backpropagation, information reuse, and cheating measurement collapse
ORAL · Invited
–
Presenters
-
Amira M Abbas
University of Amsterdam
Authors
-
Amira M Abbas
University of Amsterdam
-
-
Connecting channel expressiveness to gradient magnitudes and noise induced barren plateaus
ORAL
–
Presenters
-
Matthew Duschenes
University of Waterloo
Authors
-
Matthew Duschenes
University of Waterloo
-
Diego García-Martín
Los Alamos National Laboratory
-
Martin Larocca
Los Alamos National Laboratory
-
Zoe P Holmes
Los Alamos National Laboratory, École Polytechnique Fédérale de Lausanne
-
Marco Cerezo
Los Alamos National Laboratory
-
-
Generalization Error in Quantum Machine Learning in the Presence of Sampling Noise
ORAL
–
Publication: [1] F. Hu, et. al., Phys. Rev. X 13, 041020 (2023)
Presenters
-
Fangjun Hu
Princeton University
Authors
-
Fangjun Hu
Princeton University
-
Xun Gao
University of Colorado, Boulder, University of Colorado Boulder
-
Hakan E Tureci
Princeton University
-
-
Demonstration of a Quantum Machine Learning Algorithm beyond the Coherence Time
ORAL
–
Presenters
-
Hakan E Tureci
Princeton University
Authors
-
Hakan E Tureci
Princeton University
-
Fangjun Hu
Princeton University
-
Saeed A Khan
Princeton University
-
Nicholas T Bronn
IBM TJ Watson Research Center
-
Guilhem J Ribeill
Raytheon BBN
-
Gerasimos M Angelatos
Raytheon BBN Technologies
-
Graham E Rowlands
BBN Technology - Massachusetts
-
-
Reduction of finite sampling noise in quantum neural networks
ORAL
–
Publication: Kreplin, David A., and Marco Roth. "Reduction of finite sampling noise in quantum neural networks." arXiv preprint arXiv:2306.01639 (2023).
Presenters
-
David Kreplin
Fraunhofer IPA
Authors
-
David Kreplin
Fraunhofer IPA
-
Marco Roth
Fraunhofer IPA
-
-
Full-stack Quantum Machine Learning in High Energy Physics
ORAL
–
Publication: https://arxiv.org/abs/2210.10787
https://arxiv.org/abs/2308.05657
https://arxiv.org/abs/2303.11346Presenters
-
Matteo Robbiati
CERN
Authors
-
Matteo Robbiati
CERN
-
-
Quantum Inception Score as an Expressivity Measure of the Quantum Generative Models
ORAL
–
Presenters
-
Akira Sone
University of Massachusetts Boston
Authors
-
Akira Sone
University of Massachusetts Boston
-
Naoki Yamamoto
Keio University
-
-
Problem-informed Graphical Quantum Generative Learning
ORAL
–
Presenters
-
Bence Bakó
Wigner Research Center for Physics
Authors
-
Bence Bakó
Wigner Research Center for Physics
-
Zsófia Kallus
Ericsson Research
-
Zoltan Zimboras
Wigner Research Center for Physics
-
-
Generative quantum machine learning via denoising diffusion probabilistic models
ORAL
–
Publication: arXiv: 2310.05866
Presenters
-
Peng Xu
University of Illinois at Urbana-Champaign
Authors
-
Bingzhi Zhang
University of Southern California
-
Peng Xu
University of Illinois at Urbana-Champaign
-
Xiaohui Chen
University of Southern California
-
Quntao Zhuang
University of Southern California
-
-
Reinforcement Learning-Assisted Shot Assignment for Improved Convergence in Variational Quantum Eigensolver
ORAL
–
Publication: Zhu, Linghua, et al. arXiv:2307.06504 (2023).
Presenters
-
Linghua Zhu
University of Washington
Authors
-
Linghua Zhu
University of Washington
-
Senwei Liang
Lawrence Berkeley National Laboratory
-
Chao Yang
Lawrence Berkeley Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley national lab
-
Xiaosong Li
University of Washington
-
-
Optimizing ZX-Diagrams with Deep Reinforcement Learning
ORAL
–
Presenters
-
Maximilian Nägele
Max Planck Institute for Science of Light
Authors
-
Maximilian Nägele
Max Planck Institute for Science of Light
-
Florian Marquardt
Friedrich-Alexander University Erlangen, Max Planck Institute for the Science of Light, Friedrich-Alexander University Erlangen-, Max Planck Institute for the Science of Light
-