Machine Learning of Molecules and Materials: Materials II
FOCUS · T60 · ID: 2159544
Presentations
-
Exploring equivariant models for electronic properties
ORAL · Invited
–
Presenters
-
Mihail Bogojeski
TU Berlin
Authors
-
Klaus-Robert Muller
TU Berlin
-
Mihail Bogojeski
TU Berlin
-
-
Neural Network Backflow for ab initio quantum chemistry in second quantization
ORAL
–
Presenters
-
An-Jun Liu
University of Illinois Urbana-Champaign
Authors
-
An-Jun Liu
University of Illinois Urbana-Champaign
-
Bryan K Clark
University of Illinois at Urbana-Champaign
-
-
Avoiding a reproducibility crisis in deep learning for surrogate potentials: How massively parallel programming, millions of training steps, and numerics combine to create non-determinism in models and what this means for the simulated physics
ORAL
–
Publication: Coletti M, Sedova A, Chahal R, Gibson L, Roy S, Bryantsev V. Multiobjective Hyperparameter Optimization for Deep Learning Interatomic Potential Training Using NSGA-II. In: Proceedings of the 52nd International Conference on Parallel Processing Workshops 2023 Aug 7 (pp. 172-179).
Planned work: Understanding numerical reproducibility in training and application of deep learning surrogate potentials for physicsPresenters
-
Ada Sedova
Oak Ridge National Laboratory
Authors
-
Ada Sedova
Oak Ridge National Laboratory
-
Ganesh Sivaraman
Argonne National Laboratory
-
Mark Coletti
Oak Ridge National Laboratory
-
Wael Elwasif
Oak Ridge National Laboratory
-
Micholas D Smith
University of Tennessee, Knoxville
-
Oscar Hernandez
Oak Ridge National Laboratory
-
-
Free energy simulations with machine learning-based forcefields for prediction of thermodynamic properties of molten salts
ORAL
–
Publication: Several papers are in preparations at this stage, 1-2 papers will be submitted by the time of presentation
Presenters
-
Vyacheslav Bryantsev
Oak Ridge National Laboratory, Oak Ridge National Lab, OaK Ridge National Lab
Authors
-
Vyacheslav Bryantsev
Oak Ridge National Laboratory, Oak Ridge National Lab, OaK Ridge National Lab
-
Luke D Gibson
Oak Ridge National Laboratory
-
Rajni Chahal
Oak Ridge National Laboratory
-
Santanu Roy
Oak Ridge National Laboratory, Oak Ridge National Lab
-
-
JARVIS-Leaderboard: Large Scale Benchmark of Materials Design Methods
ORAL
–
Presenters
-
Kamal Choudhary
National Institute of Standards and Tech
Authors
-
Kamal Choudhary
National Institute of Standards and Tech
-
-
First-principles study of THz dielectric properties of liquid molecules with a machine learning model for dipole moments
ORAL
–
Publication: "34th IUPAP Conference on Computational Physics" Springer Proceedings in Physics, submitted.
Presenters
-
Tomohito Amano
Univ of Tokyo
Authors
-
Tomohito Amano
Univ of Tokyo
-
Yamazaki Tamio
JSR Corporation
-
Shinji Tsuneyuki
The university of Tokyo
-
-
Machine learning molecular conformational energies using semi-local density fingerprints
ORAL
–
Presenters
-
Yang Yang
Cornell University
Authors
-
Yang Yang
Cornell University
-
Zachary M Sparrow
Cornell University
-
Brian G Ernst
Cornell University
-
Trine K Quady
Cornell University
-
Zhuofan Shen
Cornell University
-
Richard Kang
Cornell University, University of California, Berkeley
-
Justin Lee
Cornell University
-
Yan Yang
Cornell University
-
Lijie Tu
Cornell University
-
Robert A Distasio
Cornell University
-
-
Spectroscopy of two-dimensional interacting lattice electrons using symmetry-awareneural backflow transformations
ORAL
–
Publication: Soon to appear in arxiv:
I. Romero, J. Nys, and G. Carleo , Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware
neural backflow transformations
Work based on :
https://arxiv.org/pdf/2104.14869.pdfPresenters
-
Imelda Romero
École Polytechnique Fédérale de Lausanne
Authors
-
Imelda Romero
École Polytechnique Fédérale de Lausanne
-
Jannes Nys
École Polytechnique Fédérale de Lausanne (EPFL)
-
Giuseppe Carleo
EPFL
-
-
Using Machine Learning to Predict the Adsorption Properties of Thiophene (C<sub>4</sub>H<sub>4</sub>S)
ORAL
–
Presenters
-
Walter F Malone
Tuskegee University, Professor
Authors
-
Walter F Malone
Tuskegee University, Professor
-
Soleil Chapman
Tuskegee University
-
-
Machine Learned Interatomic Potentials to Predict Solvatochromic and Stokes Shifts
ORAL
–
Publication: -
Presenters
-
Carlo Maino
Universty of Warwick
Authors
-
Carlo Maino
Universty of Warwick
-
Nicholas D Hine
University of Warwick
-
Vasilios G Stavros
University of Warwick
-
Natércia Rodrigues
Instituto Superior Técnico
-
-
Electronic stopping power predictions from machine learning
ORAL
–
Presenters
-
Cheng-Wei Lee
Colorado School of Mines
Authors
-
Cheng-Wei Lee
Colorado School of Mines
-
Logan Ward
Argonne National Laboratory
-
Ben Blaiszik
University of Chicago
-
Ian Foster
Argonne National Laboratory
-
Andre Schleife
University of Illinois at Urbana-Champaign
-
-
Predicting Properties of van der Waals Magnets using Graph Neural Networks
ORAL
–
Presenters
-
Peter Minch
Rensselaer Polytechnic Institute
Authors
-
Peter Minch
Rensselaer Polytechnic Institute
-
Romakanta Bhattarai
Rensselaer Polytechnic Institute
-
Trevor David Rhone
Rensselaer Polytechnic Institute
-
-
Optimizing machine learning electronic structure methods based on the one-electron reduced density matrix
ORAL
–
Publication: [1] Y. Bai, L. Vogt-Maranto, M. E. Tuckerman, and W. J. Glover. Machine learning the Hohenberg-Kohn map for molecular excited states. Nature communications, 13:7044, 2022.
[2] F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K. R. Mu ̈ller. Bypassing the Kohn- Sham equations with machine learning. Nature communications, 8:872, 2017.
[3] L. Fiedler, N. A. Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P. Thompson, S. Rajaman- ickam, and A. Cangi. Predicting electronic structures at any length scale with machine learning. npj Computational Materials, 9:115, 2023.
[4] X. Shao, L. Paetow, M. E. Tuckerman, and M. Pavanello. Machine learning electronic structure methods based on the one-electron reduced density matrix. Nature Communications, 14:6281, 2023.Presenters
-
Nicolas J Viot
Rutgers University - Newark
Authors
-
Nicolas J Viot
Rutgers University - Newark
-
Xuecheng Shao
Rutgers University - Newark
-
Michele Pavanello
Rutgers University - Newark
-