Model-based Statistical Physics, Computable Data, and Model-Free Artificial Intelligence
INVITED · W56 · ID: 1850305
Presentations
-
On the use of physics in machine learning for imaging and quantifying complex processes
ORAL · Invited
–
Publication: Qihang Zhang, et al, Nature Comm. 14:1159, 2023
Presenters
-
George Barbastathis
MIT
Authors
-
George Barbastathis
MIT
-
Qihang Zhang
Singapore-MIT Alliance for Research and Technology Centre; present address: Tsinghua University
-
Richard D Braatz
Massachusetts Institute of Technology MIT
-
Allan Myerson
Massachusetts Institute of Technology
-
Charles Papageorgiou
Takeda Pharmaceuticals
-
Wenlong Tang
Takeda Pharmaceuticals
-
Yi Wei
Massachusetts Institute of Technology
-
Neda Nazemifard
Takeda Pharmaceuticals
-
Deborah Pereg
Massachusetts Institute of Technology
-
Ajinkya Pandit
Massachusetts Institute of Technology
-
Shashank Muddu
Massachusetts Institute of Technology
-
Sandip Mondal
Sinagpore-MIT Alliance for Research and Technology Centre
-
Daniel Roxby
Singapore-MIT Alliance for Research and Technology Centre
-
Jongyoon Han
Massachusetts Institute of Technology MIT
-
-
Energy Frontier Exploration using Particle Physics and AI
ORAL · Invited
–
Publication: A. Khot, M.S. Neubauer, A. Roy. (2023). A detailed study of interpretability of deep neural network based top taggers. Mach. Learn. Sci. Tech., 4(3), 035003. https://doi.org/10.1088/2632-2153/ace0a1
A. Deiana, et al. (2022). Applications and Techniques for Fast Machine Learning in Science. Front. Big Data, 5, 787421. https://doi.org/10.3389/fdata.2022.787421Presenters
-
Mark S Neubauer
University of Illinois at Urbana-Champaign
Authors
-
Mark S Neubauer
University of Illinois at Urbana-Champaign
-
-
Data-driven medical image formation without a priori models
ORAL · Invited
–
Publication: Hoerig C, Ghaboussi J, Insana MF, "Data-driven elasticity imaging using Cartesian neural network constitutive models and the autoprogressive method," IEEE Trans Med Imaging 38(5):1150-1160, 2019. doi: 10.1109/TMI.2018.2879495. PMID: 30403625.
Hoerig, C, Ghaboussi J, Wang L, Insana MF, "Machine learning in model-free mechanical property imaging: novel integration of physics with the constrained optimization process," (invited review), Frontiers in Phys, 9:600718. 2021. doi: 10.3389/fphy.2021.600718.Presenters
-
Michael Insana
Authors
-
Michael Insana
-
Will Newman
University of Illinois at Urbana-Champaign
-
-
The Restricted Boltzmann Machine: from the statistical physics of disordered systems to a practical and interpretative generative machine learning.
ORAL · Invited
–
Publication: * Restricted Boltzmann machine: Recent advances and mean-field theory, Chinese Physics B 30 040202 (2021) DOI 10.1088/1674-1056/abd160
* Equilibrium and non-equilibrium regimes in the learning of restricted Boltzmann machines
, Neurips conference 2021,
* Inferring effective couplings with Restricted Boltzmann Machines, arXiv:2309.02292 https://doi.org/10.48550/arXiv.2309.02292
* Unsupervised hierarchical clustering using the learning dynamics of restricted Boltzmann machines, Phys. Rev. E 108, 014110 (2023) https://doi.org/10.1103/PhysRevE.108.014110Presenters
-
Aurélien Decelle
Universidad Complutense de Madrid
Authors
-
Aurélien Decelle
Universidad Complutense de Madrid
-
Beatriz Seoane
Univ Complutense
-
Lorenzo Rosset
Laboratoire de physique de l'Ecole normale supérieure (LPENS)
-
Cyril Furtlehner
INRIA Paris Saclay
-
Nicolas Bereux
LISN, Université Paris Saclay
-
Giovanni Catania
Theoretical Physics department, Universidad Complutense de Madrid
-
Elisabeth Agoritsas
University of Geneva
-