Quantum chaos and quantum phase transitions in Kerr parametric oscillators

ORAL

Abstract

Transmon qubits are the predominant element in circuit-based quantum information processing, such as existing quantum computers. But more than qubits, they are multilevel nonlinear oscillators that can be used to investigate fundamental physics questions. We show that on the same Kerr parametric oscillator implemented with driven SNAIL transmon superconducting circuits, one can either simulate excited state quantum phase transitions (ESQPTs) or study quantum chaos. ESQPTs take place in the regime where Kerr-cat qubits are generated, while chaos sets in when the nonlinearities and drive become strong. As the parameters are changed from one limit to the other, perturbative expansions used to derive static effective models cease to capture all the relevant physics of the original driven system.

* This research was supported by the NSF CCI grant (Award Number 2124511).

Publication: "Spectral kissing and its dynamical consequences in the squeeze-driven Kerr oscillator", npj Quantum Information 9, 76 (2023).
"Effective versus Floquet theory for the Kerr parametric oscillator", arXiv:2309.12516.
"Driving Kerr parametric oscillators into chaos" (planned paper).

Presenters

  • Lea F Santos

    Department of Physics, University of Connecticut, University of Connecticut

Authors

  • Lea F Santos

    Department of Physics, University of Connecticut, University of Connecticut

  • Jorge Chavez

    University of Connecticut

  • Miguel A Prado

    University of Connecticut

  • Rodrigo G Cortinas

    Yale University

  • Victor S Batista

    Department of Chemistry, Yale University, Yale University

  • Ignacio García-Mata

    Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Universidad Nacional de Mar del Plata

  • Diego A Wisniacki

    Departamento de Física "J. J. Giambiagi" and IFIBA, FCEyN, Universidad de Buenos Aires, Universidad de Buenos Aires

  • Francisco Pérez-Bernal

    Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Universidad de Huelva