Towards a new paradigm for machine learning-driven analysis and surrogate modeling for X-ray absorption spectroscopy
ORAL · Invited
Abstract
* The research presented here is based upon work supported by the following: (1) U.S. Department of Energy, Office of Science, Office Basic Energy Sciences, under Award No. FWP PS-030. (2) Theory and computational resources of the Center for Functional Nanomaterials, which is a U.S. Department of Energy Office of Science User Facility, and the Scientific Data and Computing Center at Brookhaven National Laboratory under Contract No. DE-SC0012704. (3) U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award No. DE-FG02- 97ER25308.
–
Publication: H. Kwon, W. Sun, T. Hsu, W. Jeong, F. Aydin, S. Sharma, F. Meng, M. R. Carbone, X. Chen, D. Lu, L. F. Wan, M. H. Nielsen & T. A. Pham. Harnessing Neural Networks for Elucidating X-ray Absorption Structure–Spectrum Relationships in Amorphous Carbon. The Journal of Physical Chemistry C 127, 16473 (2023).
M. R. Carbone, F. Meng, C. Vorwerk, B. Maurer, F. Peschel, X. Qu, E. Stavitski, C. Draxl, J. Vinson & D. Lu. Lightshow: a Python package for generating computational x-ray absorption spectroscopy input files. The Journal of Open Source Software 8, 5182 (2023).
A. Ghose, M. Segal, F. Meng, Z. Liang, M. S. Hybertsen, X. Qu, E. Stavitski, S. Yoo, D. Lu & M. R. Carbone. Uncertainty-aware predictions of molecular X-ray absorption spectra using neural network ensembles. Physical Review Research 5, 013180 (2023).
S. B. Torrisi, M. R. Carbone, B. A. Rohr, J. H. Montoya, Y. Ha, J. Yano, S. K. Suram & L. Hung.. Random Forest Machine Learning Models for Interpretable X-Ray Absorption Near-Edge Structure Spectrum-Property Relationships. npj Computational Materials 6, 109 (2020).
M. R. Carbone, M. Topsakal, D. Lu & S. Yoo. Machine-learning X-ray absorption spectra to quantitative accuracy. Physical Review Letters 124, 156401 (2020).
M. R. Carbone, S. Yoo, M. Topsakal & D. Lu. Classification of local chemical environments from x-ray absorption spectra using supervised machine learning. Physical Review Materials 3, 033604 (2019).
Presenters
-
Matthew R Carbone
Brookhaven National Laboratory
Authors
-
Matthew R Carbone
Brookhaven National Laboratory