The Conservation of Lepton Number

ORAL

Abstract

In the vortex theory, it was proposed that all hadrons and the electron, muon, and tau leptons are three dimensional (3d) holes bent into and out of the surfaces of higher dimensional space [1]. These holes are the ends of vortices of space flowing through fourth dimensional space that originally connected them to their anti-particle. As space flows into a 3d hole, a positive electrostatic charge is created; as space flows out of a 3d hole a negative electrostatic charge is created; while neutral particles are vortices bent into torus configurations [2]. Neutrinos are quantized transverse waves bent out of the 3d surface and anti-neutrinos are bent into the 3d surface. Applying this model to the creation and destruction of leptons, a correlation was discovered between lepton number and the direction space is flowing (black arrows) in electrons, muons, taus, their anti-particles and, the direction bent space is oriented within their associated neutrino or anti-neutrino. \newline [1] R.G.Moon, V.V.Vasiliev, NUCLEUS-2003, 2003, Book of abstracts. P.251. \newline [2] R.G.Moon, V.V.Vasiliev, NUCLEUS-2004, 2004, Book of abstracts. P.259.

Authors

  • Russell Moon

    Independent Researcher, Florida, USA

  • R.F. Kelly

    SVT Associates, Department of Material Science and Engineering, Department of Chemistry, University of Florida, Florida International University, WebAssign, North Carolina State University, Broughton High School, Dept.~of Chemistry, Univ.~of Florida, Dept.~of Physics, Univ.~of Florida, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA, Center for Superconductivity Research, Dept. of Physics, University of Maryland, College Park, MD, 20742, USA, Dept. of Physics, University of Florida, 32611, USA, Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg, Germany, Physics \& Astronomy, UNC-CH, Chapel Hill, NC, University of North Carolina, Auburn University, University of Virginia, Tech. Univ. Eindhoven, University of Florida, Los Alamos National Labs, University of New Mexico, Advanced Materials Research Institute, University of New Orleans, New Orleans, LA, Department of Physics, University of Florida, UF, NHMFL, FSU / NHMFL, FSU, University of Arkansas, Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, Dept. of Physics, University of Florida, Gainesville, FL 32611-8440, USA, Dept. Chemistry Florida State Univeristy, University of Brewen, Tohoku University, Okayama University, Dept of Chemistry, Florida State University, Dept. of Chemistry, Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, Laboratoire Lois Neel, Grenoble, France, Dept. of Chemistry, Texas A\&M University, Tsinghua Univ., INEL, JINR, Vanderbilt Univ./LBNL, Vanderbilt Univ., SVT Associates, Inc., Department of Chemical Engineering, University of Florida, Department of Materials Science and Engineering, University of Florida, Department of Electrical Engineering, National Central University, Taiwan, University of Miami, North Carolina Central University, University of Missouri Rolla, AB Millimetre, France, Thomas Keating Ltd., UK, Dept. of Physics, Univ. of Florida, Department of Material Science and Engineering University of Florida, Department of Chemistry University of Florida, Department of Chemical Eng. University of Florida, Naval Research Lab, Washington, DC, University of Rajshahi, LENIN All Russian Electrotechnical Institute, Moscow, Russia, Independent Researcher, Argentina

  • R.F. Kelly

    SVT Associates, Department of Material Science and Engineering, Department of Chemistry, University of Florida, Florida International University, WebAssign, North Carolina State University, Broughton High School, Dept.~of Chemistry, Univ.~of Florida, Dept.~of Physics, Univ.~of Florida, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA, Center for Superconductivity Research, Dept. of Physics, University of Maryland, College Park, MD, 20742, USA, Dept. of Physics, University of Florida, 32611, USA, Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg, Germany, Physics \& Astronomy, UNC-CH, Chapel Hill, NC, University of North Carolina, Auburn University, University of Virginia, Tech. Univ. Eindhoven, University of Florida, Los Alamos National Labs, University of New Mexico, Advanced Materials Research Institute, University of New Orleans, New Orleans, LA, Department of Physics, University of Florida, UF, NHMFL, FSU / NHMFL, FSU, University of Arkansas, Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, Dept. of Physics, University of Florida, Gainesville, FL 32611-8440, USA, Dept. Chemistry Florida State Univeristy, University of Brewen, Tohoku University, Okayama University, Dept of Chemistry, Florida State University, Dept. of Chemistry, Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, Laboratoire Lois Neel, Grenoble, France, Dept. of Chemistry, Texas A\&M University, Tsinghua Univ., INEL, JINR, Vanderbilt Univ./LBNL, Vanderbilt Univ., SVT Associates, Inc., Department of Chemical Engineering, University of Florida, Department of Materials Science and Engineering, University of Florida, Department of Electrical Engineering, National Central University, Taiwan, University of Miami, North Carolina Central University, University of Missouri Rolla, AB Millimetre, France, Thomas Keating Ltd., UK, Dept. of Physics, Univ. of Florida, Department of Material Science and Engineering University of Florida, Department of Chemistry University of Florida, Department of Chemical Eng. University of Florida, Naval Research Lab, Washington, DC, University of Rajshahi, LENIN All Russian Electrotechnical Institute, Moscow, Russia, Independent Researcher, Argentina