Investigation of the kinetic energy change in optimally-doped and overdoped YBa$_{2}$Cu$_{3}$O$_{7-\delta }$

ORAL

Abstract

Optimally-doped and overdoped thin films of the high temperature superconductor YBa$_{2}$Cu$_{3}$O$_{7-\delta }$ (Y-123) with T$_{c }$= 90 K and 79 K, respectively, have been investigated by infrared spectroscopy. The films were highly ab-plane-oriented. In the normal state, the charge-transfer band weight is found to decrease further in the overdoped sample. This indicates the spectral weight of charge transfer band is transferred to the mid-infrared region, just as in the case of increasing doping in the under doped regime. Below T$_{c}$, the superfluid condensation is found in both optimally-doped and overdoped samples. In the optimally-doped sample, the kinetic energy does not change significantly. However, in comparison to the optimally-doped sample, the overdoped sample shows much smaller superfluid (or condensate) density . This result indicates it is difficult to decide the kinetic energy change in the overdoped samples.

Authors

  • Minghan Chen

  • David Tanner

    Department of Physics, University of Florida, Gainesville FL USA, Department of Physics, University of Florida, Department of Physics, University of Florida, Gainesville, FL 32611, University of Florida

  • R.F. Kelly

    SVT Associates, Department of Material Science and Engineering, Department of Chemistry, University of Florida, Florida International University, WebAssign, North Carolina State University, Broughton High School, Dept.~of Chemistry, Univ.~of Florida, Dept.~of Physics, Univ.~of Florida, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA, Center for Superconductivity Research, Dept. of Physics, University of Maryland, College Park, MD, 20742, USA, Dept. of Physics, University of Florida, 32611, USA, Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg, Germany, Physics \& Astronomy, UNC-CH, Chapel Hill, NC, University of North Carolina, Auburn University, University of Virginia, Tech. Univ. Eindhoven, University of Florida, Los Alamos National Labs, University of New Mexico, Advanced Materials Research Institute, University of New Orleans, New Orleans, LA, Department of Physics, University of Florida, UF, NHMFL, FSU / NHMFL, FSU, University of Arkansas, Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, Dept. of Physics, University of Florida, Gainesville, FL 32611-8440, USA, Dept. Chemistry Florida State Univeristy, University of Brewen, Tohoku University, Okayama University, Dept of Chemistry, Florida State University, Dept. of Chemistry, Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, Laboratoire Lois Neel, Grenoble, France, Dept. of Chemistry, Texas A\&M University, Tsinghua Univ., INEL, JINR, Vanderbilt Univ./LBNL, Vanderbilt Univ., SVT Associates, Inc., Department of Chemical Engineering, University of Florida, Department of Materials Science and Engineering, University of Florida, Department of Electrical Engineering, National Central University, Taiwan, University of Miami, North Carolina Central University, University of Missouri Rolla, AB Millimetre, France, Thomas Keating Ltd., UK, Dept. of Physics, Univ. of Florida, Department of Material Science and Engineering University of Florida, Department of Chemistry University of Florida, Department of Chemical Eng. University of Florida, Naval Research Lab, Washington, DC, University of Rajshahi, LENIN All Russian Electrotechnical Institute, Moscow, Russia, Independent Researcher, Argentina

  • R.F. Kelly

    SVT Associates, Department of Material Science and Engineering, Department of Chemistry, University of Florida, Florida International University, WebAssign, North Carolina State University, Broughton High School, Dept.~of Chemistry, Univ.~of Florida, Dept.~of Physics, Univ.~of Florida, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA, Center for Superconductivity Research, Dept. of Physics, University of Maryland, College Park, MD, 20742, USA, Dept. of Physics, University of Florida, 32611, USA, Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg, Germany, Physics \& Astronomy, UNC-CH, Chapel Hill, NC, University of North Carolina, Auburn University, University of Virginia, Tech. Univ. Eindhoven, University of Florida, Los Alamos National Labs, University of New Mexico, Advanced Materials Research Institute, University of New Orleans, New Orleans, LA, Department of Physics, University of Florida, UF, NHMFL, FSU / NHMFL, FSU, University of Arkansas, Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA, Dept. of Physics, University of Florida, Gainesville, FL 32611-8440, USA, Dept. Chemistry Florida State Univeristy, University of Brewen, Tohoku University, Okayama University, Dept of Chemistry, Florida State University, Dept. of Chemistry, Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL, Laboratoire Lois Neel, Grenoble, France, Dept. of Chemistry, Texas A\&M University, Tsinghua Univ., INEL, JINR, Vanderbilt Univ./LBNL, Vanderbilt Univ., SVT Associates, Inc., Department of Chemical Engineering, University of Florida, Department of Materials Science and Engineering, University of Florida, Department of Electrical Engineering, National Central University, Taiwan, University of Miami, North Carolina Central University, University of Missouri Rolla, AB Millimetre, France, Thomas Keating Ltd., UK, Dept. of Physics, Univ. of Florida, Department of Material Science and Engineering University of Florida, Department of Chemistry University of Florida, Department of Chemical Eng. University of Florida, Naval Research Lab, Washington, DC, University of Rajshahi, LENIN All Russian Electrotechnical Institute, Moscow, Russia, Independent Researcher, Argentina