Ion Molecule Collisions at Low Energies

POSTER

Abstract

Charge transfer is a fundamental phenomenon in nature, playing a crucial role in many chemical and biological processes. The capture of electron (also known as charge transfer or charge exchange) is well known to be an important collision process in nearly all types of plasma environments from terrestrial laboratories [1] to solar system atmospheres [2] to astrophysical sources. Ion-molecule collisions have received less attention both theoretically and experimentally than its atomic counterpart due to extra degree of freedom. Using \textit{ab initio} calculations we report the potential surfaces and coupling matrix elements. Our results will be compared with other theoretical and experimental results, if available. [1] R. K. Janev, in ``Atomic and Molecular Processes in Fusion Edge Plasmas'' (Plenum Press, NY, 1995), p1. [2] T. E. Cravens, Science 296, 1042 (2002).

Authors

  • Dwayne Joseph

    Department of Physics, Florida A\&M University

  • Jaetae Seo

    NC A\&T State University, Penn State University, The Ohio State University, Wright State University, AFRL/RYHC Hanscom AFB MA 01731, Harvard University, The College of William \& Mary, NCSU Near-field Optics Lab, University of North Carolina at Chapel Hill, Weizmann, PTB, Braunschweig, UMass, TUNL/Duke, UConn, UConn/TUNL, University of North Carolina, Chapel Hill, North Carolina State University, Brimrose Corporation of America, Hampton University, Elizabeth City State University, Department of Physics, Florida A\&M University, Tallahassee, Florida-32307, Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh, Department of Physics, University of Rajshahi, Rajshah-6205, Bangladesh, Department of Physics, University of Rajshahi, Rajshahi-6250, Bangladesh, Department of Physics, University of Rajshahi-6205, Bangladesh, Alabama A\&M University, Fachbereich C-Mathematik und Naturwissen-Schaften, Bergische Universitat Wuppertal, D-42097, Wuppertal, Germany, NC State University, College of William and Mary, Department of Physics, N.C. State Univeristy, Research Triangle Institute, NCSU Physics, Pennsylvania State University, Tsinghua University, Lawrence Berkeley National Laboratory, Vanderbilt University, LSU, UNIRIB, U. Tenn., ORNL, Miss. St., University of North Carolina at Chapel Hill and Triangle Universities Nuclear Laboratory, NCA\&T, Duke, NCCU, UNC-Chapel Hill, Department of Physics, North Carolina State University, Department of Chemistry, North Carolina State University, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hil, North Carolina School of Science and Mathematics, Department of Physics, Elon University, Dept. of Physics - UNC - Chapel Hill, Nanyang Technological University, School of Materials Sciences and Engineering, Singapore, Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3255, USA, Argonne National Laboratory, Department of Physics, Hampton University, Hampton, VA 23668, Korea Research Institute of Standards and Science, Daejeon, 305-600, South Korea, Department of Chemistry, Gyeongsang National University, Jinju 660-701, South Korea, Electronics and Telecommunications Research Institute, Daejeon, 305-700, South Korea, Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609

  • Bidhan Saha

    Department of Physics, Florida A\&M University, Florida-32307.