Site occupancy and magnetic properties of aluminum substituted barium hexaferrite

ORAL

Abstract

Aluminum substituted barium hexaferrite has been studied using density functional theory (DFT). The substitution has been carried out for BaFe$_{12-x}$Al$_{x}$O$_{19}$ from x = 1 to x = 3 in steps of 0.5. With the aid of accurate DFT study, our result show that the Al$^{3+}$ ions preferentially occupy the 2a and 12k site, unlike the previously reported 4f2, 2a, 4f1, and 12k sites. Our result confirms the experimental fact that with increasing of Al substitution the total magnetic moment monotonically decreases. We also present a possible reason of the site preference of 2a and 12k.

Authors

  • Amitava Moitra

    Mississippi State University

  • Sungho Kim

    Mississippi State University

  • Seong-Gon Kim

    Mississippi State University

  • Milind Purohit

    Univ of South Carolina, Benedict College, Sc 29204, Univ. South Carolina, Benedict College, Univ South Carolina, GA Tech, Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa 52242, USA, Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA, Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, College of William \& Mary, Harvard University, Benedict College, SC 29204, Massachusetts Institute of Technology, University of Applied Science, Bielefeld, Germany, Francis Marion University, Physics Dept., Emory University, Emory University, Formerly Emory University, currently UCLA, Physics Department, Georgia State University, Univ. of Georgia, Dept. of Chemistry, Universidad Nacional de Quilmes, Argentina, Pr, Dr, Derpartment of Physics, Florida A\&M University, Tallahassee, FL-32307, Department of Physics, Emory University, Georgia Institute of Technology, Naval Research Laboratory, University of Alabama, Tsinghua University, Lawrence Berkeley National Laboratory, Vanderbilt University, Jagellonian Univ., Univ. of Bonn, North Carolina A\&T State Univ., North Carolina Central Univ., Duke Univ. and TUNL, Georgia State University, Dept of Physics, Emory University, Cell Biology Department, Emory University, Physics Department, Emory University, University of South Carolina

  • Milind Purohit

    Univ of South Carolina, Benedict College, Sc 29204, Univ. South Carolina, Benedict College, Univ South Carolina, GA Tech, Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa 52242, USA, Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA, Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, College of William \& Mary, Harvard University, Benedict College, SC 29204, Massachusetts Institute of Technology, University of Applied Science, Bielefeld, Germany, Francis Marion University, Physics Dept., Emory University, Emory University, Formerly Emory University, currently UCLA, Physics Department, Georgia State University, Univ. of Georgia, Dept. of Chemistry, Universidad Nacional de Quilmes, Argentina, Pr, Dr, Derpartment of Physics, Florida A\&M University, Tallahassee, FL-32307, Department of Physics, Emory University, Georgia Institute of Technology, Naval Research Laboratory, University of Alabama, Tsinghua University, Lawrence Berkeley National Laboratory, Vanderbilt University, Jagellonian Univ., Univ. of Bonn, North Carolina A\&T State Univ., North Carolina Central Univ., Duke Univ. and TUNL, Georgia State University, Dept of Physics, Emory University, Cell Biology Department, Emory University, Physics Department, Emory University, University of South Carolina